浏览全部资源
扫码关注微信
1. Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine,Zhejiang Province,Hangzhou,China
2. Zhejiang Provincial Key Lab of Ophthalmology,Zhejiang Province,Hangzhou,China
3. Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University,Zhejiang Province,Hangzhou,China
4. Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine,Hangzhou,China
Published:2024,
扫 描 看 全 文
Yifei Niu, Junfeng Ji, Ke Yao, et al. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. [J]. AOPR 4(2):52-64(2024)
Yifei Niu, Junfeng Ji, Ke Yao, et al. Regenerative treatment of ophthalmic diseases with stem cells: Principles, progress, and challenges. [J]. AOPR 4(2):52-64(2024) DOI: 10.1016/j.aopr.2024.02.001.
BackgroundDegenerate eye disorders
such as glaucoma
cataracts and age-related macular degeneration (AMD)
are prevalent causes of blindness and visual impairment worldwide. Other eye disorders
including limbal stem cell deficiency (LSCD)
dry eye diseases (DED)
and retinitis pigmentosa (RP)
result in symptoms such as ocular discomfort and impaired visual function
significantly impacting quality of life. Traditional therapies are limited
primarily focus on delaying disease progression
while emerging stem cell therapy directly targets ocular tissues
aiming to restore ocular function by reconstructing ocular tissue.Main textThe utilization of stem cells for the treatment of diverse degenerative ocular diseases is becoming increasingly significant
owing to the regenerative and malleable properties of stem cells and their functional cells. Currently
stem cell therapy for ophthalmopathy involves various cell types
such as embryonic stem cells (ESCs)
induced pluripotent stem cells (iPSCs)
mesenchymal stem cells (MSCs)
and retinal progenitor cells (RPCs). In the current article
we will review the current progress regarding the utilization of stem cells for the regeneration of ocular tissue covering key eye tissues from the cornea to the retina. These therapies aim to address the loss of functional cells
restore damaged ocular tissue and or in a paracrine-mediated manner. We also provide an overview of the ocular disorders that stem cell therapy is targeting
as well as the difficulties and opportunities in this field.ConclusionsStem cells can not only promote tissue regeneration but also release exosomes to mitigate inflammation and provide neuroprotection
making stem cell therapy emerge as a promising approach for treating a wide range of eye disorders through multiple mechanisms.
Stem cellOcular diseasesInduced pluripotent stem cellsMesenchymal stem cellsCataractsGlaucomaDiabetic retinopathyRetinal degenerative diseases
1 C.M. VerfaillieAdult stem cells: assessing the case for pluripotency Trends Cell Biol, 12 (11) (2002), pp. 502-508, 10.1016/s0962-8924(02)02386-3
2 J. Yin, U. JurkunasLimbal stem cell transplantation and complications Semin Ophthalmol, 33 (1) (2018), pp. 134-141, 10.1080/08820538.2017.1353834
3 B.H. Jeng, C.P. Halfpenny, D.M. Meisler, et al.Management of focal limbal stem cell deficiency associated with soft contact lens wear Cornea, 30 (1) (2011), pp. 18-23, 10.1097/ICO.0b013e3181e2d0f5
4 K.R. Kenyon, S.C. TsengLimbal autograft transplantation for ocular surface disorders Ophthalmology, 96 (5) (1989), pp. 709-722, 10.1016/s0161-6420(89)32833-8 722-723
5 M. Fuest, G.H. Yam, G.S. Peh, et al.Advances in corneal cell therapy Regen Med, 11 (6) (2016), pp. 601-615, 10.2217/rme-2016-0054
6 A.R. O'Callaghan, J.T. DanielsConcise review: limbal epithelial stem cell therapy: controversies and challenges Stem Cell, 29 (12) (2011), pp. 1923-1932, 10.1002/stem.756
7 S. Kolli, S. Ahmad, M. Lako, et al.Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency Stem Cell, 28 (3) (2010), pp. 597-610, 10.1002/stem.276
8 S.L. Scholz, H. Thomasen, K. Hestermann, et al.[long-term results of autologous transplantation of limbal epithelium cultivated ex vivo for limbal stem cell deficiency] Ophthalmologe, 113 (4) (2016), pp. 321-329, 10.1007/s00347-015-0110-y
9 N. Zakaria, T. Possemiers, S.N. Dhubhghaill, et al.Results of a phase i/ii clinical trial: standardized, non-xenogenic, cultivated limbal stem cell transplantation J Transl Med, 12 (2014), p. 58, 10.1186/1479-5876-12-58
10 B.E. Ramirez, A. Sanchez, J.M. Herreras, et al.Stem cell therapy for corneal epithelium regeneration following good manufacturing and clinical procedures BioMed Res Int, 2015 (2015), Article 408495, 10.1155/2015/408495
11 V.M. Borderie, D. Ghoubay, C. Georgeon, et al.Long-term results of cultured limbal stem cell versus limbal tissue transplantation in stage iii limbal deficiency Stem Cells Transl Med, 8 (12) (2019), pp. 1230-1241, 10.1002/sctm.19-0021
12 N. Sharma, S. Mohanty, V. Jhanji, et al.Amniotic membrane transplantation with or without autologous cultivated limbal stem cell transplantation for the management of partial limbal stem cell deficiency Clin Ophthalmol, 12 (2018), pp. 2103-2106, 10.2147/OPTH.S181035
13 V.S. Sangwan, S. Basu, S. MacNeil, et al.Simple limbal epithelial transplantation (slet): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency Br J Ophthalmol, 96 (7) (2012), pp. 931-934, 10.1136/bjophthalmol-2011-301164
14 S. Bobba, S. Chow, S. Watson, et al.Clinical outcomes of xeno-free expansion and transplantation of autologous ocular surface epithelial stem cells via contact lens delivery: a prospective case series Stem Cell Res Ther, 6 (2015), p. 23, 10.1186/s13287-015-0009-1
15 M. Gonzalez-Andrades, R. Mata, M. Gonzalez-Gallardo, et al.A study protocol for a multicentre randomised clinical trial evaluating the safety and feasibility of a bioengineered human allogeneic nanostructured anterior cornea in patients with advanced corneal trophic ulcers refractory to conventional treatment BMJ Open, 7 (9) (2017), Article e16487, 10.1136/bmjopen-2017-016487
16 A.M. Ionescu, M. Alaminos, C.J. de la Cruz, et al.Investigating a novel nanostructured fibrin-agarose biomaterial for human cornea tissue engineering: rheological properties J Mech Behav Biomed Mater, 4 (8) (2011), pp. 1963-1973, 10.1016/j.jmbbm.2011.06.013
17 H. Tanioka, S. Kawasaki, K. Yamasaki, et al.Establishment of a cultivated human conjunctival epithelium as an alternative tissue source for autologous corneal epithelial transplantation Invest Ophthalmol Vis Sci, 47 (9) (2006), pp. 3820-3827, 10.1167/iovs.06-0293
18 N. Scuderi, C. Alfano, G. Paolini, et al.Transplantation of autologous cultivated conjunctival epithelium for the restoration of defects in the ocular surface Scand J Plast ReConstr Surg Hand Surg, 36 (6) (2002), pp. 340-348, 10.1080/028443102321096339
19 L.P. Ang, D.T. Tan, H. Cajucom-Uy, et al.Autologous cultivated conjunctival transplantation for pterygium surgery Am J Ophthalmol, 139 (4) (2005), pp. 611-619, 10.1016/j.ajo.2004.10.056
20 J.R. Ricardo, P.C. Cristovam, P.A. Filho, et al.Transplantation of conjunctival epithelial cells cultivated ex vivo in patients with total limbal stem cell deficiency Cornea, 32 (3) (2013), pp. 221-228, 10.1097/ICO.0b013e31825034be
21 P. Prabhasawat, P. Ekpo, M. Uiprasertkul, et al.Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease Cell Tissue Bank, 17 (3) (2016), pp. 491-503, 10.1007/s10561-016-9575-4
22 S. Kolli, S. Ahmad, H.S. Mudhar, et al.Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency Stem Cell, 32 (8) (2014), pp. 2135-2146, 10.1002/stem.1694
23 J. Shimazaki, K. Higa, N. Kato, et al.Barrier function of cultivated limbal and oral mucosal epithelial cell sheets Invest Ophthalmol Vis Sci, 50 (12) (2009), pp. 5672-5680, 10.1167/iovs.09-3820
24 C.G. Priya, P. Arpitha, S. Vaishali, et al.Adult human buccal epithelial stem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction Eye (Lond), 25 (12) (2011), pp. 1641-1649, 10.1038/eye.2011.230
25 J. Liu, H. Sheha, Y. Fu, et al.Oral mucosal graft with amniotic membrane transplantation for total limbal stem cell deficiency Am J Ophthalmol, 152 (5) (2011), pp. 739-747, 10.1016/j.ajo.2011.03.037
26 T. Nakamura, K. Takeda, T. Inatomi, et al.Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders Br J Ophthalmol, 95 (7) (2011), pp. 942-946, 10.1136/bjo.2010.188714
27 H.C. Chen, H.L. Chen, J.Y. Lai, et al.Persistence of transplanted oral mucosal epithelial cells in human cornea Invest Ophthalmol Vis Sci, 50 (10) (2009), pp. 4660-4668, 10.1167/iovs.09-3377
28 T. Nakamura, T. Inatomi, C. Sotozono, et al.Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders Br J Ophthalmol, 88 (10) (2004), pp. 1280-1284, 10.1136/bjo.2003.038497
29 E. Kushnerev, S.G. Shawcross, S. Sothirachagan, et al.Regeneration of corneal epithelium with dental pulp stem cells using a contact lens delivery system Invest Ophthalmol Vis Sci, 57 (13) (2016), pp. 5192-5199, 10.1167/iovs.15-17953
30 E.A. Meyer-Blazejewska, M.K. Call, O. Yamanaka, et al.From hair to cornea: toward the therapeutic use of hair follicle-derived stem cells in the treatment of limbal stem cell deficiency Stem Cell, 29 (1) (2011), pp. 57-66, 10.1002/stem.550
31 R. Hayashi, Y. Ishikawa, M. Ito, et al.Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium PLoS One, 7 (9) (2012), Article e45435, 10.1371/journal.pone.0045435
32 A. Mikhailova, T. Ilmarinen, H. Uusitalo, et al.Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells Stem Cell Rep, 2 (2) (2014), pp. 219-231, 10.1016/j.stemcr.2013.12.014
33 J.P. Craig, K.K. Nichols, E.K. Akpek, et al.Tfos dews ii definition and classification report Ocul Surf, 15 (3) (2017), pp. 276-283, 10.1016/j.jtos.2017.05.008
34 M. Moller-Hansen, A.C. Larsen, P.B. Toft, et al.Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease Ocul Surf, 19 (2021), pp. 43-52, 10.1016/j.jtos.2020.11.013
35 J.Y. Weng, X. Du, S.X. Geng, et al.Mesenchymal stem cell as salvage treatment for refractory chronic gvhd Bone Marrow Transplant, 45 (12) (2010), pp. 1732-1740, 10.1038/bmt.2010.195
36 J. Weng, C. He, P. Lai, et al.Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease Mol Ther, 20 (12) (2012), pp. 2347-2354, 10.1038/mt.2012.208
37 T. Zhou, C. He, P. Lai, et al.Mir-204-containing exosomes ameliorate gvhd-associated dry eye disease Sci Adv, 8 (2) (2022), p. j9617, 10.1126/sciadv.abj9617
38 F. Arnalich-Montiel, D.B.J. Alio, J.L. AlioCorneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis (Lond), 3 (2016), p. 2, 10.1186/s40662-016-0033-y
39 P. Gain, R. Jullienne, Z. He, et al.Global survey of corneal transplantation and eye banking JAMA Ophthalmol, 134 (2) (2016), pp. 167-173, 10.1001/jamaophthalmol.2015.4776
40 J.W. Ruberti, J.D. ZieskePrelude to corneal tissue engineering - gaining control of collagen organization Prog Retin Eye Res, 27 (5) (2008), pp. 549-577, 10.1016/j.preteyeres.2008.08.001
41 F. Arnalich-Montiel, S. Pastor, A. Blazquez-Martinez, et al.Adipose-derived stem cells are a source for cell therapy of the corneal stroma Stem Cell, 26 (2) (2008), pp. 570-579, 10.1634/stemcells.2007-0653
42 L. Espandar, B. Bunnell, G.Y. Wang, et al.Adipose-derived stem cells on hyaluronic acid-derived scaffold: a new horizon in bioengineered cornea Arch Ophthalmol, 130 (2) (2012), pp. 202-208, 10.1001/archopthalmol.2011.1398
43 D.B.J. Alio, Z.M. El, A. Azaar, et al.Corneal stroma enhancement with decellularized stromal laminas with or without stem cell recellularization for advanced keratoconus Am J Ophthalmol, 186 (2018), pp. 47-58, 10.1016/j.ajo.2017.10.026
44 D.B.J. Alio, Z.M. El, M.P. de Miguel, et al.Cellular therapy with human autologous adipose-derived adult stem cells for advanced keratoconus Cornea, 36 (8) (2017), pp. 952-960, 10.1097/ICO.0000000000001228
45 J.L. Alio, D.B.J. Alio, Z.M. El, et al.Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes Am J Ophthalmol, 203 (2019), pp. 53-68, 10.1016/j.ajo.2019.02.009
46 Z.M. El, D.B.J. Alio, D. Mingo, et al.Corneal stromal densitometry evolution in a clinical model of cellular therapy for advanced keratoconus Cornea (2022), 10.1097/ICO.0000000000003152
47 Z.M. El, J.L. Alio, D.B.J. Alio, et al.Corneal stromal regeneration: a review of human clinical studies in keratoconus treatment Front Med, 8 (2021), Article 650724, 10.3389/fmed.2021.650724
48 S. Kinoshita, N. Koizumi, M. Ueno, et al.Injection of cultured cells with a rock inhibitor for bullous keratopathy N Engl J Med, 378 (11) (2018), pp. 995-1003, 10.1056/NEJMoa1712770
49 D.C. Beebe, N.M. Holekamp, Y.B. ShuiOxidative damage and the prevention of age-related cataracts Ophthalmic Res, 44 (3) (2010), pp. 155-165, 10.1159/000316481
50 H. Lin, H. Ouyang, J. Zhu, et al.Lens regeneration using endogenous stem cells with gain of visual function Nature, 531 (7594) (2016), pp. 323-328, 10.1038/nature17181
51 Q. Fu, Z. Qin, X. Jin, et al.Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells Invest Ophthalmol Vis Sci, 58 (1) (2017), pp. 517-527, 10.1167/iovs.16-20504
52 X. Chen, H. Wang, H. Chen, et al.Lens regeneration in situ using hescs-derived cells -similar to natural lens iScience, 26 (6) (2023), Article 106921, 10.1016/j.isci.2023.106921
53 Y. Du, H. Yun, E. Yang, et al.Stem cells from trabecular meshwork home to tm tissue in vivo Invest Ophthalmol Vis Sci, 54 (2) (2013), pp. 1450-1459, 10.1167/iovs.12-11056
54 D.W. Abu-Hassan, X. Li, E.I. Ryan, et al.Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma Stem Cell, 33 (3) (2015), pp. 751-761, 10.1002/stem.1885
55 W. Zhu, O.W. Gramlich, L. Laboissonniere, et al.Transplantation of ipsc-derived tm cells rescues glaucoma phenotypes in vivo Proc Natl Acad Sci U S A, 113 (25) (2016), pp. E3492-E3500, 10.1073/pnas.1604153113
56 W. Zhu, A. Jain, O.W. Gramlich, et al.Restoration of aqueous humor outflow following transplantation of ipsc-derived trabecular meshwork cells in a transgenic mouse model of glaucoma Invest Ophthalmol Vis Sci, 58 (4) (2017), pp. 2054-2062, 10.1167/iovs.16-20672
57 S. Xiong, A. Kumar, S. Tian, et al.Stem cell transplantation rescued a primary open-angle glaucoma mouse model Elife, 10 (2021), 10.7554/eLife.63677
58 H. Yun, Y. Wang, Y. Zhou, et al.Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model Commun Biol, 1 (2018), p. 216, 10.1038/s42003-018-0227-z
59 C. Roubeix, D. Godefroy, C. Mias, et al.Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma Stem Cell Res Ther, 6 (1) (2015), p. 177, 10.1186/s13287-015-0168-0
60 Y. Zhou, X. Xia, E. Yang, et al.Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential Faseb J, 34 (5) (2020), pp. 7160-7177, 10.1096/fj.201902326R
61 E.J. Snider, K.P. Kubelick, K. Tweed, et al.Improving stem cell delivery to the trabecular meshwork using magnetic nanoparticles Sci Rep, 8 (1) (2018), Article 12251, 10.1038/s41598-018-30834-7
62 S.J. Coulon, J.S. Schuman, Y. Du, et al.A novel glaucoma approach: stem cell regeneration of the trabecular meshwork Prog Retin Eye Res, 90 (2022), Article 101063, 10.1016/j.preteyeres.2022.101063
63 A. Musiał-Wysocka, M. Kot, M. MajkaThe pros and cons of mesenchymal stem cell-based therapies Cell Transplant, 28 (7) (2019), pp. 801-812, 10.1177/0963689719837897
64 G. Li, C. Lee, A.T. Read, et al.Anti-fibrotic activity of a rho-kinase inhibitor restores outflow function and intraocular pressure homeostasis Elife, 10 (2021), 10.7554/eLife.60831
65 G. Li, C. Lee, V. Agrahari, et al.In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model Proc Natl Acad Sci U S A, 116 (5) (2019), pp. 1714-1722, 10.1073/pnas.1814889116
66 K. Wang, M.A. Johnstone, C. Xin, et al.Estimating human trabecular meshwork stiffness by numerical modeling and advanced oct imaging Invest Ophthalmol Vis Sci, 58 (11) (2017), pp. 4809-4817, 10.1167/iovs.17-22175
67 M. Gorbatyuk, O. GorbatyukReview: retinal degeneration: focus on the unfolded protein response Mol Vis, 19 (2013), pp. 1985-1998
68 J. Kramer, K.R. Chirco, D.A. LambaImmunological considerations for retinal stem cell therapy Adv Exp Med Biol, 1186 (2019), pp. 99-119, 10.1007/978-3-030-28471-8_4
69 M. Mandai, A. Watanabe, Y. Kurimoto, et al.Autologous induced stem-cell-derived retinal cells for macular degeneration N Engl J Med, 376 (11) (2017), pp. 1038-1046, 10.1056/NEJMoa1608368
70 P.A. Gourraud, L. Gilson, M. Girard, et al.The role of human leukocyte antigen matching in the development of multiethnic "haplobank" of induced pluripotent stem cell lines Stem Cell, 30 (2) (2012), pp. 180-186, 10.1002/stem.772
71 M. Turner, S. Leslie, N.G. Martin, et al.Toward the development of a global induced pluripotent stem cell library Cell Stem Cell, 13 (4) (2013), pp. 382-384, 10.1016/j.stem.2013.08.003
72 S. Lee, J.Y. Huh, D.M. Turner, et al.Repurposing the cord blood bank for haplobanking of hla-homozygous ipscs and their usefulness to multiple populations Stem Cell, 36 (10) (2018), pp. 1552-1566, 10.1002/stem.2865
73 G.G. Gornalusse, R.K. Hirata, S.E. Funk, et al.Hla-e-expressing pluripotent stem cells escape allogeneic responses and lysis by nk cells Nat Biotechnol, 35 (8) (2017), pp. 765-772, 10.1038/nbt.3860
74 L. Riolobos, R.K. Hirata, C.J. Turtle, et al.Hla engineering of human pluripotent stem cells Mol Ther, 21 (6) (2013), pp. 1232-1241, 10.1038/mt.2013.59
75 X. Ma, H. Li, Y. Chen, et al.The transcription factor mitf in rpe function and dysfunction Prog Retin Eye Res, 73 (2019), Article 100766, 10.1016/j.preteyeres.2019.06.002
76 X. Zhang, D. BokTransplantation of retinal pigment epithelial cells and immune response in the subretinal space Invest Ophthalmol Vis Sci, 39 (6) (1998), pp. 1021-1027
77 S. Crafoord, P.V. Algvere, S. Seregard, et al.Long-term outcome of rpe allografts to the subretinal space of rabbits Acta Ophthalmol Scand, 77 (3) (1999), pp. 247-254, 10.1034/j.1600-0420.1999.770301.x
78 K. Gabrielian, A. Oganesian, S.C. Patel, et al.Cellular response in rabbit eyes after human fetal rpe cell transplantation Graefes Arch Clin Exp Ophthalmol, 237 (4) (1999), pp. 326-335, 10.1007/s004170050240
79 S. Sugita, Y. Iwasaki, K. Makabe, et al.Successful transplantation of retinal pigment epithelial cells from mhc homozygote ipscs in mhc-matched models Stem Cell Rep, 7 (4) (2016), pp. 635-648, 10.1016/j.stemcr.2016.08.010
80 S. Sugita, Y. Iwasaki, K. Makabe, et al.Lack of t cell response to ipsc-derived retinal pigment epithelial cells from hla homozygous donors Stem Cell Rep, 7 (4) (2016), pp. 619-634, 10.1016/j.stemcr.2016.08.011
81 S. Aisenbrey, B.A. Lafaut, P. Szurman, et al.Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up Arch Ophthalmol, 124 (2) (2006), pp. 183-188, 10.1001/archopht.124.2.183
82 S.D. Schwartz, C.D. Regillo, B.L. Lam, et al.Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies LANCET (N AM ED), 385 (9967) (2015), pp. 509-516, 10.1016/S0140-6736(14)61376-3
83 L. Da Cruz, K. Fynes, O. Georgiadis, et al.Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration Nat Biotechnol, 36 (4) (2018), pp. 328-337, 10.1038/nbt.4114
84 M.G. Nittala, A. Uji, S.B. Velaga, et al.Effect of human central nervous system stem cell subretinal transplantation on progression of geographic atrophy secondary to nonneovascular age-related macular degeneration Ophthalmol Retina, 5 (1) (2021), pp. 32-40, 10.1016/j.oret.2020.06.012
85 Y. Liu, H.W. Xu, L. Wang, et al.Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration Cell Discov, 4 (1) (2018), p. 50, 10.1038/s41421-018-0053-y
86 S.D. Schwartz, J.P. Hubschman, G. Heilwell, et al.Embryonic stem cell trials for macular degeneration: a preliminary report LANCET (N AM ED), 379 (9817) (2012), pp. 713-720, 10.1016/S0140-6736(12)60028-2
87 A.H. Kashani, J.S. Lebkowski, D.R. Hinton, et al.Survival of an hla-mismatched, bioengineered rpe implant in dry age-related macular degeneration Stem Cell Rep, 17 (3) (2022), pp. 448-458, 10.1016/j.stemcr.2022.01.001
88 A.H. Kashani, J.S. Lebkowski, F.M. Rahhal, et al.A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration Sci Transl Med, 10 (435) (2018), 10.1126/scitranslmed.aao4097
89 A.H. Kashani, J.S. Lebkowski, F.M. Rahhal, et al.One-year follow-up in a phase 1/2a clinical trial of an allogeneic rpe cell bioengineered implant for advanced dry age-related macular degeneration Transl Vis Sci Technol, 10 (10) (2021), p. 13, 10.1167/tvst.10.10.13
90 I. Tsukahara, S. Ninomiya, A. Castellarin, et al.Early attachment of uncultured retinal pigment epithelium from aged donors onto bruch's membrane explants Exp Eye Res, 74 (2) (2002), pp. 255-266, 10.1006/exer.2001.1123
91 M.A. ZarbinAnalysis of retinal pigment epithelium integrin expression and adhesion to aged submacular human bruch's membrane Trans Am Ophthalmol Soc, 101 (2003), pp. 499-520
92 I.F. Christiane, K. Ilse, G. Carl, et al.Human retinal pigment epithelium (rpe) transplantation: outcome after autologous rpe-choroid sheet and rpe cell-suspension in a randomised clinical study Brit J Ophthalmol, 95 (3) (2011), p. 370, 10.1136/bjo.2009.176305
93 P.P. Bither, L.A. BernsStargardt's disease: a review of the literature J Am Optom Assoc, 59 (2) (1988), pp. 106-111
94 S.Y. Li, Y. Liu, L. Wang, et al.A phase i clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage stargardt macular degeneration: 5-years' follow-up Cell Prolif, 54 (9) (2021), Article e13100, 10.1111/cpr.13100
95 F.R. Brant, F.H. Lojudice, R.L. Zago, et al.Transplantation of subretinal stem cell-derived retinal pigment epithelium for stargardt disease: a phase i clinical trial Retina, 43 (2) (2023), pp. 263-274, 10.1097/IAE.0000000000003655
96 Y. Sung, M.J. Lee, J. Choi, et al.Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in asian stargardt disease patients Br J Ophthalmol, 105 (6) (2021), pp. 829-837, 10.1136/bjophthalmol-2020-316225
97 M.S. Mehat, V. Sundaram, C. Ripamonti, et al.Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration Ophthalmology, 125 (11) (2018), pp. 1765-1775, 10.1016/j.ophtha.2018.04.037
98 A. Oner, Z.B. Gonen, D.G. Sevim, et al.Suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with dry-type age-related macular degeneration and stargardt's macular dystrophy: 6-month follow-up results of a phase 2 study Cell Reprog, 20 (6) (2018), pp. 329-336, 10.1089/cell.2018.0045
99 C. Prada, J. Puga, L. Pérez-Méndez, et al.Spatial and temporal patterns of neurogenesis in the chick retina Eur J Neurosci, 3 (6) (1991), pp. 559-569, 10.1111/j.1460-9568.1991.tb00843.x
100 I. Ahmed, R.J. Johnston, M.S. SinghPluripotent stem cell therapy for retinal diseases Ann Transl Med, 9 (15) (2021), p. 1279, 10.21037/atm-20-4747
101 D. Zhu, X. Deng, C. Spee, et al.Polarized secretion of pedf from human embryonic stem cell-derived rpe promotes retinal progenitor cell survival Invest Ophthalmol Vis Sci, 52 (3) (2011), pp. 1573-1585, 10.1167/iovs.10-6413
102 V. Tropepe, B.L. Coles, B.J. Chiasson, et al.Retinal stem cells in the adult mammalian eye Science, 287 (5460) (2000), pp. 2032-2036, 10.1126/science.287.5460.2032
103 D.T. Hartong, E.L. Berson, T.P. DryjaRetinitis pigmentosa LANCET (N AM ED), 368 (9549) (2006), pp. 1795-1809, 10.1016/S0140-6736(06)69740-7
104 T. Das, M. Del Cerro, S. Jalali, et al.The transplantation of human fetal neuroretinal cells in advanced retinitis pigmentosa patients: results of a long-term safety study Exp Neurol, 157 (1) (1999), pp. 58-68, 10.1006/exnr.1998.6992
105 Y. Liu, S.J. Chen, S.Y. Li, et al.Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients Stem Cell Res Ther, 8 (1) (2017), p. 209, 10.1186/s13287-017-0661-8
106 N.D. Radtke, R.B. Aramant, H.M. Petry, et al.Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium Am J Ophthalmol, 146 (2) (2008), pp. 172-182, 10.1016/j.ajo.2008.04.009
107 R.C. Siqueira, A. Messias, K. Messias, et al.Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (reticell -clinical trial) Stem Cell Res Ther, 6 (1) (2015), p. 29, 10.1186/s13287-015-0020-6
108 A. Oner, Z.B. Gonen, N. Sinim, et al.Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase i clinical safety study Stem Cell Res Ther, 7 (1) (2016), p. 178, 10.1186/s13287-016-0432-y
109 S.S. Park, G. Bauer, M. Abedi, et al.Intravitreal autologous bone marrow cd34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings Invest Ophthalmol Vis Sci, 56 (1) (2014), pp. 81-89, 10.1167/iovs.14-15415
110 A. Tuekprakhon, S. Sangkitporn, A. Trinavarat, et al.Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase i clinical trial in patients with retinitis pigmentosa Stem Cell Res Ther, 12 (1) (2021), p. 52, 10.1186/s13287-020-02122-7
111 T. Zhao, Q. Liang, X. Meng, et al.Intravenous infusion of umbilical cord mesenchymal stem cells maintains and partially improves visual function in patients with advanced retinitis pigmentosa Stem Cells Dev, 29 (16) (2020), pp. 1029-1037, 10.1089/scd.2020.0037
112 E. Özmert, U. ArslanManagement of retinitis pigmentosa by wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results Stem Cell Res Ther, 11 (1) (2020), p. 353, 10.1186/s13287-020-01870-w
113 N. Cheung, P. Mitchell, T.Y. WongDiabetic retinopathy Lancet, 376 (9735) (2010), pp. 124-136, 10.1016/S0140-6736(09)62124-3
114 A.N. Kollias, M.W. UlbigDiabetic retinopathy: early diagnosis and effective treatment Dtsch Arztebl Int, 107 (5) (2010), pp. 75-83, 10.3238/arztebl.2010.0075 84
115 X. Gu, X. Yu, C. Zhao, et al.Efficacy and safety of autologous bone marrow mesenchymal stem cell transplantation in patients with diabetic retinopathy Cell Physiol Biochem, 49 (1) (2018), pp. 40-52, 10.1159/000492838
116 N.D. Bull, K.R. MartinUsing stem cells to mend the retina in ocular disease Regen Med, 4 (6) (2009), pp. 855-864, 10.2217/rme.09.59
117 T.V. Johnson, N.D. Bull, D.P. Hunt, et al.Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma Invest Ophthalmol Vis Sci, 51 (4) (2010), pp. 2051-2059, 10.1167/iovs.09-4509
118 N.D. Bull, K.A. Irvine, R.J. Franklin, et al.Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma Invest Ophthalmol Vis Sci, 50 (9) (2009), pp. 4244-4253, 10.1167/iovs.08-3239
119 H. Aoki, A. Hara, M. Niwa, et al.Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells Graefes Arch Clin Exp Ophthalmol, 246 (2) (2008), pp. 255-265, 10.1007/s00417-007-0710-6
120 C. Vilela, A. Messias, R.T. Calado, et al.Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma Doc Ophthalmol, 143 (1) (2021), pp. 33-38, 10.1007/s10633-021-09817-z
121 A.E. Kuriyan, T.A. Albini, J.H. Townsend, et al.Vision loss after intravitreal injection of autologous "stem cells" for amd N Engl J Med, 376 (11) (2017), pp. 1047-1053, 10.1056/NEJMoa1609583
122 G. Gagliardi, M.K. Ben, A. Chaffiol, et al.Characterization and transplantation of cd73-positive photoreceptors isolated from human ipsc-derived retinal organoids Stem Cell Rep, 11 (3) (2018), pp. 665-680, 10.1016/j.stemcr.2018.07.005
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution