1. ,Harbin,China
2. ,Shenzhen,China
3. ,Harbin,China
扫 描 看 全 文
Research progress of iron metabolism in retinal diseases[J]. 眼科实践与研究新进展, 2023,3(2):93-100.
Cunzi Li, Chunyu Xiao, Hui Tao, et al. Research progress of iron metabolism in retinal diseases[J]. AOPR, 2023,3(2):93-100.
Research progress of iron metabolism in retinal diseases[J]. 眼科实践与研究新进展, 2023,3(2):93-100. DOI: 10.1016/j.aopr.2023.02.001.
Cunzi Li, Chunyu Xiao, Hui Tao, et al. Research progress of iron metabolism in retinal diseases[J]. AOPR, 2023,3(2):93-100. DOI: 10.1016/j.aopr.2023.02.001.
Background,Retinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application.,Main text,Iron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease.,Conclusions,This review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases.
Background,Retinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application.,Main text,Iron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease.,Conclusions,This review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases.
Iron metabolismRetinaAge-related macular degenerationGlaucomaDiabetic retinopathyRetinitis pigmentosaHereditary iron overload
1 K Pantopoulos, SK Porwal, A Tartakoff, et al.Mechanisms of mammalian iron homeostasis Biochemistry, 51 (29) (Jul 2012), pp. 5705-5724, 10.1021/bi300752r
2 E Picard, A Daruich, J Youale, et al.From rust to quantum biology: the role of iron in retina physiopathology Cells, 9 (3) (Mar 2020), p. 705, 10.3390/cells9030705
3 N Maio, TA. RouaultIron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery Biochim Biophys Acta, 1853 (6) (Jun 2015), pp. 1493-1512, 10.1016/j.bbamcr.2014.09.009
4 G Moiseyev, Y Takahashi, Y Chen, et al.RPE65 is an iron(II)-dependent isomerohydrolase in the retinoid visual cycle J Biol Chem, 281 (5) (Feb 2006), pp. 2835-2840, 10.1074/jbc.M508903200
5 H. ShichiMicrosomal electron transfer system of bovine retinal pigment epithelium Exp Eye Res, 8 (1) (Jan 1969), pp. 60-68, 10.1016/s0014-4835(69)80081-3
6 MC McGahan, J Harned, M Mukunnemkeril, et al.Iron alters glutamate secretion by regulating cytosolic aconitase activity Am J Physiol Cell Physiol, 288 (5) (May 2005), pp. C1117-C1124, 10.1152/ajpcell.00444.2004
7 DA Stoyanovsky, YY Tyurina, I Shrivastava, et al.Iron catalysis of lipid peroxidation in ferroptosis: regulated enzymatic or random free radical reaction? Free Radic Biol Med, 133 (Mar 2019), pp. 153-161, 10.1016/j.freeradbiomed.2018.09.008
8 K Totsuka, T Ueta, T Uchida, et al.Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells Exp Eye Res, 181 (Apr 2019), pp. 316-324, 10.1016/j.exer.2018.08.019
9 M Yang, KF So, WC Lam, et al.Cell ferroptosis: new mechanism and new hope for retinitis pigmentosa Cells, 10 (8) (Aug 2021), p. 2153, 10.3390/cells10082153
10 S Huang, K Liu, Y Su, et al.Research progress of ferroptosis in glaucoma and optic nerve damage Mol Cell Biochem (Sep 2022), 10.1007/s11010-022-04545-7 10.1007/s11010-022-04545-7
11 RC Hunt, A Dewey, AA. DavisTransferrin receptors on the surfaces of retinal pigment epithelial cells are associated with the cytoskeleton J Cell Sci, 92 (Pt 4) (Apr 1989), pp. 655-666, 10.1242/jcs.92.4.655
12 MG Yefimova, JC Jeanny, X Guillonneau, et al.Iron, ferritin, transferrin, and transferrin receptor in the adult rat retina Invest Ophthalmol Vis Sci, 41 (8) (Jul 2000), pp. 2343-2351
13 X He, P Hahn, J Iacovelli, et al.Iron homeostasis and toxicity in retinal degeneration Prog Retin Eye Res, 26 (6) (Nov 2007), pp. 649-673, 10.1016/j.preteyeres.2007.07.004
14 L Mendes-Jorge, D Ramos, A Valença, et al.Correction: L-ferritin binding to Scara5: a new iron traffic pathway potentially implicated in retinopathy PLoS One, 12 (6) (Jun 2017), Article e0180288, 10.1371/journal.pone.0180288
15 J Sterling, S Guttha, Y Song, et al.Iron importers Zip8 and Zip14 are expressed in retina and regulated by retinal iron levels Exp Eye Res, 155 (Feb 2017), pp. 15-23, 10.1016/j.exer.2016.12.008
16 BH Baumann, W Shu, Y Song, et al.Ferroportin-mediated iron export from vascular endothelial cells in retina and brain Exp Eye Res, 187 (Oct 2019), Article 107728, 10.1016/j.exer.2019.107728
17 AN Steere, SL Byrne, ND Chasteen, et al.Kinetics of iron release from transferrin bound to the transferrin receptor at endosomal pH Biochim Biophys Acta, 1820 (3) (Mar 2012), pp. 326-333, 10.1016/j.bbagen.2011.06.003
18 RS Ohgami, DR Campagna, EL Greer, et al.Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells Nat Genet, 37 (11) (Nov 2005), pp. 1264-1269, 10.1038/ng1658
19 A Dautry-Varsat, A Ciechanover, HF. LodishpH and the recycling of transferrin during receptor-mediated endocytosis Proc Natl Acad Sci U S A, 80 (8) (Apr 1983), pp. 2258-2262, 10.1073/pnas.80.8.2258
20 P Hahn, T Dentchev, Y Qian, et al.Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina Mol Vis, 10 (Aug 2004), pp. 598-607
21 A Donovan, CA Lima, JL Pinkus, et al.The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis Cell Metabol, 1 (3) (Mar 2005), pp. 191-200, 10.1016/j.cmet.2005.01.003
22 RH Farkas, I Chowers, AS Hackam, et al.Increased expression of iron-regulating genes in monkey and human glaucoma Invest Ophthalmol Vis Sci, 45 (5) (May 2004), pp. 1410-1417, 10.1167/iovs.03-0872
23 C Gerhardinger, MB Costa, MC Coulombe, et al.Expression of acute-phase response proteins in retinal Müller cells in diabetes Invest Ophthalmol Vis Sci, 46 (1) (Jan 2005), pp. 349-357, 10.1167/iovs.04-0860
24 E Nemeth, MS Tuttle, J Powelson, et al.Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization Science, 306 (5704) (Dec 2004), pp. 2090-2093, 10.1126/science.1104742
25 W Shu, BH Baumann, Y Song, et al.Ferrous but not ferric iron sulfate kills photoreceptors and induces photoreceptor-dependent RPE autofluorescence Redox Biol, 34 (Feb 2020), Article 101469, 10.1016/j.redox.2020.101469
26 H Chen, TJ Lukas, N Du, et al.Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity Invest Ophthalmol Vis Sci, 50 (4) (2009), pp. 1895-1902, 10.1167/iovs.08-2850
27 M Guo, Y Zhu, Y Shi, et al.Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies Redox Biol, 58 (Dec 2022), Article 102541, 10.1016/j.redox.2022.102541
28 SJ Dixon, KM Lemberg, MR Lamprecht, et al.Ferroptosis: an iron-dependent form of nonapoptotic cell death Cell, 149 (5) (May 2012), pp. 1060-1072, 10.1016/j.cell.2012.03.042
29 K Totsuka, T Ueta, T Uchida, et al.Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells Exp Eye Res, 181 (Apr 2019), pp. 316-324, 10.1016/j.exer.2018.08.019
30 M Yang, KF So, WC Lam, et al.Cell ferroptosis: new mechanism and new hope for retinitis pigmentosa Cells, 10 (8) (Aug 2021), p. 2153, 10.3390/cells10082153
31 C Chen, J Chen, Y Wang, et al.Ferroptosis drives photoreceptor degeneration in mice with defects in all-trans-retinal clearance Jan-Jun J Biol Chem., 296 (2021), Article 100187, 10.1074/jbc.RA120.015779
32 J Zhang, Q Qiu, H Wang, et al.TRIM46 contributes to high glucose-induced ferroptosis and cell growth inhibition in human retinal capillary endothelial cells by facilitating GPX4 ubiquitination Exp Cell Res, 407 (2) (Oct 2021), Article 112800, 10.1016/j.yexcr.2021.112800
33 JP Gnana-Prakasam, S Ananth, PD Prasad, et al.Expression and iron-dependent regulation of succinate receptor GPR91 in retinal pigment epithelium Invest Ophthalmol Vis Sci, 52 (6) (Jun 2011), pp. 3751-3758, 10.1167/iovs.10-6722
34 P Mitchell, G Liew, B Gopinath, et al.Age-related macular degeneration Lancet, 392 (10153) (Sep 2018), pp. 1147-1159, 10.1016/S0140-6736(18)31550-2
35 A Biesemeier, E Yoeruek, O Eibl, et al.Iron accumulation in Bruch’s membrane and melanosomes of donor eyes with age-related macular degeneration Exp Eye Res, 137 (Aug 2015), pp. 39-49, 10.1016/j.exer.2015.05.019
36 R Pamphlett, S Cherepanoff, LK Too, et al.The distribution of toxic metals in the human retina and optic nerve head: implications for age-related macular degeneration PLoS One, 15 (10) (Oct 2020), Article e0241054, 10.1016/j.exer.2015.05.019
37 LY Guo, O Alekseev, Y Li, et al.Iron increases APP translation and amyloid-beta production in the retina Exp Eye Res, 129 (Oct 2014), pp. 31-37, 10.1016/j.exer.2014.10.012
38 S Ananth, JP Gnana-Prakasam, YD Bhutia, et al.Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid Biochim Biophys Acta, 1842 (4) (Apr 2014), pp. 603-612, 10.1016/j.bbadis.2014.01.010
39 Y Li, D Song, Y Song, et al.Iron-induced local complement component 3 (C3) up-regulation via non-canonical transforming growth factor (TGF)-β signaling in the retinal pigment epithelium J Biol Chem, 290 (19) (May 2015), pp. 11918-11934, 10.1074/jbc.M115.645903
40 BD Gelfand, CB Wright, Y Kim, et al.Iron toxicity in the retina requires alu RNA and the NLRP3 inflammasome Cell Rep, 11 (11) (Jun 2015), pp. 1686-1693, 10.1016/j.celrep.2015.05.023
41 A Mandala, A Armstrong, B Girresch, et al.Fenofibrate prevents iron induced activation of canonical Wnt/β-catenin and oxidative stress signaling in the retina NPJ Aging Mech Dis, 6 (Oct 2020), p. 12, 10.1038/s41514-020-00050-7
42 K Ueda, HJ Kim, J Zhao, et al.Iron promotes oxidative cell death caused by bisretinoids of retina Proc Natl Acad Sci U S A, 115 (19) (May 2018), pp. 4963-4968, 10.1073/pnas.1722601115
43 M Hadziahmetovic, Y Song, N Wolkow, et al.Bmp6 regulates retinal iron homeostasis and has altered expression in age-related macular degeneration Am J Pathol, 179 (1) (Jul 2011), pp. 335-348, 10.1016/j.ajpath.2011.03.033
44 L Chen, B Ma, X Liu, et al.H2 O2 induces oxidative stress damage through the BMP-6/SMAD/hepcidin axis Dev Growth Differ, 62 (2) (Feb 2020), pp. 139-146, 10.1111/dgd.12650
45 P Arosio, S. LeviCytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage Biochim Biophys Acta, 1800 (8) (Aug 2010), pp. 783-792, 10.1016/j.bbagen.2010.02.005
46 X Wang, H Yang, D Yanagisawa, et al.Mitochondrial ferritin affects mitochondria by stabilizing HIF-1α in retinal pigment epithelium: implications for the pathophysiology of age-related macular degeneration Neurobiol Aging, 47 (Nov 2016), pp. 168-179 j.neurobiolaging.2016.07.025
47 E Picard, I Fontaine, L Jonet, et al.The protective role of transferrin in Müller glial cells after iron-induced toxicity Mol Vis, 14 (May 2008), pp. 928-941
48 D Wysokinski, K Danisz, E Pawlowska, et al.Transferrin receptor levels and polymorphism of its gene in age-related macular degeneration Acta Biochim Pol, 62 (2) (Apr 2015), pp. 177-184, 10.18388/abp.2014_843
49 E Synowiec, J Szaflik, M Chmielewska, et al.An association between polymorphism of the heme oxygenase-1 and -2 genes and age-related macular degeneration Mol Biol Rep, 39 (3) (Mar 2012), pp. 2081-2087, 10.1007/s11033-011-0955-3
50 E Synowiec, M Pogorzelska, J Blasiak, et al.Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration Mol Biol Rep, 39 (6) (Jun 2012), pp. 7077-7087, 10.1007/s11033-012-1539-6
51 M Szemraj, K Oszajca, J Szemraj, et al.MicroRNA expression analysis in serum of patients with congenital hemochromatosis and age-related macular degeneration (AMD) Med Sci Mon Int Med J Exp Clin Res, 23 (Aug 2017), pp. 4050-4060, 10.12659/msm.902366
52 T Imamura, T Hirayama, K Tsuruma, et al.Hydroxyl radicals cause fluctuation in intracellular ferrous ion levels upon light exposure during photoreceptor cell death Exp Eye Res, 129 (Dec 2014), pp. 24-30, 10.1016/j.exer.2014.10.019
53 JM Kang, AP. TannaGlaucoma Med Clin, 105 (3) (May 2021), pp. 493-510, 10.1016/j.mcna.2021.01.004
54 J Youale, K Bigot, B Kodati, et al.Neuroprotective effects of transferrin in experimental glaucoma models Int J Mol Sci, 23 (21) (Oct 2022), Article 12753, 10.3390/ijms232112753
55 RH Farkas, I Chowers, AS Hackam, et al.Increased expression of iron-regulating genes in monkey and human glaucoma Invest Ophthalmol Vis Sci, 45 (5) (May 2004), pp. 1410-1417, 10.1167/iovs.03-0872
56 Y Chen, RS Khan, A Cwanger, et al.Dexras1, a small GTPase, is required for glutamate-NMDA neurotoxicity J Neurosci, 33 (8) (Feb 2013), pp. 3582-3587, 10.1523/JNEUROSCI.1497-12.2013
57 JH Cheah, SF Kim, LD Hester, et al.NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1 Neuron, 51 (4) (Aug 2006), pp. 431-440, 10.1016/j.neuron.2006.07.011
58 K Sakamoto, T Suzuki, K Takahashi, et al.Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina Exp Eye Res, 171 (Jun 2018), pp. 30-36, 10.1016/j.exer.2018.03.008
59 QN Cui, AR Bargoud, AG Ross, et al.Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma Exp Eye Res, 193 (Apr 2020), Article 107961, 10.1016/j.exer.2020.107961
60 F Yao, J Peng, E Zhang, et al.Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma Cell Death Differ (Aug 2022), 10.1038/s41418-022-01046-4 10.1038/s41418-022-01046-4
61 A Ashok, N Singh, S Chaudhary, et al.Retinal degeneration and alzheimer’s disease: an evolving link Int J Mol Sci, 21 (19) (Oct 2020), p. 7290, 10.3390/ijms21197290
62 J Tang, Y Zhuo, Y. LiEffects of iron and zinc on mitochondria: potential mechanisms of glaucomatous injury Front Cell Dev Biol, 9 (Aug 2021), Article 720288, 10.3389/fcell.2021.720288
63 T Rezaie, A Child, R Hitchings, et al.Adult-onset primary open-angle glaucoma caused by mutations in optineurin Science, 295 (5557) (Feb 2002), pp. 1077-1079, 10.1126/science.1066901
64 K Sirohi, ML Chalasani, C Sudhakar, et al.M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells Autophagy, 9 (4) (Jan 2013), pp. 510-527, 10.4161/auto.23458
65 P Song, J Yu, KY Chan, et al.Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis J Glob Health, 8 (1) (Jun 2018), Article 010803, 10.7189/jogh.08.010803
66 A Ciudin, C Hernández, R. SimóIron overload in diabetic retinopathy: a cause or a consequence of impaired mechanisms? Exp Diabetes Res, 2010 (Aug 2010), Article 714108, 10.1155/2010/714108
67 NS Konerirajapuram, K Coral, R Punitham, et al.Trace elements iron, copper and zinc in vitreous of patients with various vitreoretinal diseases Indian J Ophthalmol, 52 (2) (Jun 2004), pp. 145-418
68 BL Cussimanio, AA Booth, P Todd, et al.Unusual susceptibility of heme proteins to damage by glucose during non-enzymatic glycation Biophys Chem, 105 (2–3) (Sep 2003), pp. 743-755, 10.1016/s0301-4622(03)00100-5
69 B Baumann, J Sterling, Y Song, et al.Conditional müller cell ablation leads to retinal iron accumulation Invest Ophthalmol Vis Sci, 58 (10) (Aug 2017), pp. 4223-4234, 10.1167/iovs.17-21743
70 K Chaudhary, W Promsote, S Ananth, et al.Iron overload accelerates the progression of diabetic retinopathy in association with increased retinal renin expression Sci Rep, 8 (1) (Feb 2018), p. 3025, 10.1038/s41598-018-21276-2
71 T Kurihara, Y Ozawa, N Nagai, et al.Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina Diabetes, 57 (8) (Aug 2008), pp. 2191-2198, 10.2337/db07-1281
72 D Zhang, FL Lv, GH. WangEffects of HIF-1α on diabetic retinopathy angiogenesis and VEGF expression Eur Rev Med Pharmacol Sci, 22 (16) (Aug 2018), pp. 5071-5076, 10.26355/eurrev_201808_15699
73 CP Anderson, M Shen, RS Eisenstein, et al.Mammalian iron metabolism and its control by iron regulatory proteins Biochim Biophys Acta, 1823 (9) (Sep 2012), pp. 1468-1483, 10.1016/j.bbamcr.2012.05.010
74 MM Xu, J Wang, JX. XieRegulation of iron metabolism by hypoxia-inducible factors Sheng Li Xue Bao, 69 (5) (Oct 2017), pp. 598-610
75 A. FahimRetinitis pigmentosa: recent advances and future directions in diagnosis and management Curr Opin Pediatr, 30 (6) (Dec 2018), pp. 725-733, 10.1097/MOP.0000000000000690
76 E Deleon, M Lederman, E Berenstein, et al.Alteration in iron metabolism during retinal degeneration in rd10 mouse Invest Ophthalmol Vis Sci, 50 (3) (Mar 2009), pp. 1360-1365, 10.1167/iovs.08-1856
77 MG Yefimova, JC Jeanny, N Keller, et al.Impaired retinal iron homeostasis associated with defective phagocytosis in Royal College of Surgeons rats Invest Ophthalmol Vis Sci, 43 (2) (Feb 2002), pp. 537-545
78 BS Rogers, RC Symons, K Komeima, et al.Differential sensitivity of cones to iron-mediated oxidative damage Invest Ophthalmol Vis Sci, 48 (1) (Jan 2007), pp. 438-445, 10.1167/iovs.06-0528
79 E Picard, L Jonet, C Sergeant, et al.Overexpressed or intraperitoneally injected human transferrin prevents photoreceptor degeneration in rd10 mice Mol Vis, 16 (Dec 2010), pp. 2612-2625
80 A Obolensky, E Berenshtein, M Lederman, et al.Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa Free Radic Biol Med, 51 (8) (Oct 2011), pp. 1482-1491, 10.1016/j.freeradbiomed.2011.07.014
81 K Wang, B Peng, J Xiao, et al.Iron-chelating drugs enhance cone photoreceptor survival in a mouse model of retinitis pigmentosa Invest Ophthalmol Vis Sci, 58 (12) (Oct 2017), pp. 5287-5297, 10.1167/iovs.17-22096
82 ZL Harris, Y Takahashi, H Miyajima, et al.Aceruloplasminemia: molecular characterization of this disorder of iron metabolism Proc Natl Acad Sci U S A, 92 (7) (Mar 1995), pp. 2539-2543, 10.1073/pnas.92.7.2539
83 N Wolkow, Y Song, TD Wu, et al.Aceruloplasminemia: retinal histopathologic manifestations and iron-mediated melanosome degradation Arch Ophthalmol, 129 (11) (Nov 2011), pp. 1466-1474, 10.1001/archophthalmol.2011.309
84 O Furashova, S Mielke, U. LindnerAsymptomatic ocular manifestations of aceruloplasminemia in two adult Caucasian siblings: a multi-modal imaging approach Retin Cases Brief Rep (May 2021), 10.1097/ICB.0000000000001166 10.1097/ICB.0000000000001166
85 JL Dunaief, C Richa, EP Franks, et al.Macular degeneration in a patient with aceruloplasminemia, a disease associated with retinal iron overload Ophthalmology, 112 (6) (Jun 2005), pp. 1062-1065, 10.1016/j.ophtha.2004.12.029
86 CR Murphree, NN Nguyen, V Raghunathan, et al.Diagnosis and management of hereditary haemochromatosis Vox Sang, 115 (4) (May 2020), pp. 255-262, 10.1111/vox.12896
87 PM Martin, JP Gnana-Prakasam, P Roon, et al.Expression and polarized localization of the hemochromatosis gene product HFE in retinal pigment epithelium Invest Ophthalmol Vis Sci, 47 (10) (Oct 2006), pp. 4238-4244, 10.1167/iovs.06-0026
88 JP Gnana-Prakasam, M Thangaraju, K Liu, et al.Absence of iron-regulatory protein Hfe results in hyperproliferation of retinal pigment epithelium: role of cystine/glutamate exchanger Biochem J, 424 (2) (Nov 2009), pp. 243-252, 10.1042/BJ20090424
89 A Tawfik, JP Gnana-Prakasam, SB Smith, et al.Deletion of hemojuvelin, an iron-regulatory protein, in mice results in abnormal angiogenesis and vasculogenesis in retina along with reactive gliosis Invest Ophthalmol Vis Sci, 55 (6) (May 2014), pp. 3616-3625, 10.1167/iovs.13-13677
90 A Ghaffarieh, JB. CiolinoPotential of application of iron chelating agents in ophthalmic diseases Semin Ophthalmol, 36 (4) (May 2021), pp. 157-161, 10.1080/08820538.2021.1887900
91 GM. BrittenhamIron-chelating therapy for transfusional iron overload N Engl J Med, 364 (2) (Apr 2011), pp. 146-156, 10.1056/NEJMct1004810
92 R Galanello, S. CampusDeferiprone chelation therapy for thalassemia major Acta Haematol, 122 (Nov 2009), pp. 155-164, 10.1159/000243800
93 M Hadziahmetovic, Y Song, N Wolkow, et al.The oral iron chelator deferiprone protects against iron overload-induced retinal degeneration Invest Ophthalmol Vis Sci, 52 (2) (2011), pp. 959-968, 10.1167/iovs.10-6207
94 H Farajipour, S Rahimian, M. TaghizadehCurcumin: a new candidate for retinal disease therapy? J Cell Biochem (Dec 2018), 10.1002/jcb.28068 10.1002/jcb.28068
95 S Majumdar, R. SrirangamPotential of the bioflavonoids in the prevention/treatment of ocular disorders J Pharm Pharmacol, 62 (8) (Aug 2010), pp. 951-965, 10.1211/jpp.62.08.0001
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构