1. ,Hong Kong,SAR,China
2. ,UK
3. ,Hong Kong,SAR,China
4. ,Hong Kong,SAR,China
5. ,Guangdong,Guangzhou,China
扫 描 看 全 文
Mechanisms of electrical stimulation in eye diseases: A narrative review[J]. 眼科实践与研究新进展, 2022,2(2):100060.
Jinfeng Liu, Andre K.H. Ma, Kwok Fai So, et al. Mechanisms of electrical stimulation in eye diseases: A narrative review[J]. AOPR, 2022,2(2):100060.
Mechanisms of electrical stimulation in eye diseases: A narrative review[J]. 眼科实践与研究新进展, 2022,2(2):100060. DOI: 10.1016/j.aopr.2022.100060.
Jinfeng Liu, Andre K.H. Ma, Kwok Fai So, et al. Mechanisms of electrical stimulation in eye diseases: A narrative review[J]. AOPR, 2022,2(2):100060. DOI: 10.1016/j.aopr.2022.100060.
Background,In the last two decades, electrical stimulation (ES) has been tested in patients with various eye diseases and shows great treatment potential in retinitis pigmentosa and optic neuropathy. However, the clinical application of ES in ophthalmology is currently limited. On the one hand, optimization and standardization of ES protocols is still an unmet need. On the other hand, poor understanding of the underlying mechanisms has hindered clinical exploitation.,Main Text,Numerous experimental studies have been conducted to identify the treatment potential of ES in eye diseases and to explore the related cellular and molecular mechanisms. In this review, we summarized the in vitro and in vivo evidence related to cellular and tissue response to ES in eye diseases. We highlighted several pathways that may be utilized by ES to impose its effects on the diseased retina.,Conclusions,Therapeutic effect of ES in retinal degenerative diseases might through preventing neuronal apoptosis, promoting neuronal regeneration, increasing neurotrophic factors production in Müller cells, inhibiting microglial activation, enhancing retinal blood flow, and modulating brain plasticity. Future studies are suggested to analyse changes in specific retinal cells for optimizing the treatment parameters and choosing the best fit ES delivery method in target diseases.
Background,In the last two decades, electrical stimulation (ES) has been tested in patients with various eye diseases and shows great treatment potential in retinitis pigmentosa and optic neuropathy. However, the clinical application of ES in ophthalmology is currently limited. On the one hand, optimization and standardization of ES protocols is still an unmet need. On the other hand, poor understanding of the underlying mechanisms has hindered clinical exploitation.,Main Text,Numerous experimental studies have been conducted to identify the treatment potential of ES in eye diseases and to explore the related cellular and molecular mechanisms. In this review, we summarized the in vitro and in vivo evidence related to cellular and tissue response to ES in eye diseases. We highlighted several pathways that may be utilized by ES to impose its effects on the diseased retina.,Conclusions,Therapeutic effect of ES in retinal degenerative diseases might through preventing neuronal apoptosis, promoting neuronal regeneration, increasing neurotrophic factors production in Müller cells, inhibiting microglial activation, enhancing retinal blood flow, and modulating brain plasticity. Future studies are suggested to analyse changes in specific retinal cells for optimizing the treatment parameters and choosing the best fit ES delivery method in target diseases.
Electrical stimulationEye diseasesOphthalmologyRetinitis pigmentosaOptic neuropathy
1 S. Zhao, A.S. Mehta, M. ZhaoBiomedical applications of electrical stimulation Cell Mol Life Sci, 77 (14) (2020), pp. 2681-2699, 10.1007/s00018-019-03446-1
2 D. Yang, Y.I. Shin, K.S. HongSystemic review on transcranial electrical stimulation parameters and EEG/fNIRS features for brain diseases Front Neurosci, 15 (2021), p. 629323, 10.3389/fnins.2021.629323
3 A. Sehic, S. Guo, K.-S. Cho, et al.Electrical stimulation as a means for improving vision Am J Pathol, 186 (11) (2016), pp. 2783-2797, 10.1016/j.ajpath.2016.07.017
4 T. Morimoto, T. Miyoshi, T. Fujikado, et al.Electrical stimulation enhances the survival of axotomized retinal ganglion cells in vivo Neuroreport, 13 (2) (2002), pp. 227-230, 10.1097/00001756-200202110-00011
5 A.Y. Chow, V.Y. Chow, K.H. Packo, et al.The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa Arch Ophthalmol, 122 (4) (2004), pp. 460-469, 10.1001/archopht.122.4.460
6 J. Liu, K. Tong, Y. Lin, et al.Effectiveness of microcurrent stimulation in preserving retinal function of blind leading retinal degeneration and optic neuropathy: a systematic review Neuromodulation, 24 (6) (2021), pp. 992-1002, 10.1111/ner.13414
7 M.T. Pardue, M.J. Phillips, H. Yin, et al.Neuroprotective effect of subretinal implants in the RCS rat Invest Ophthalmol Vis Sci, 46 (2) (2005), pp. 674-682, 10.1167/iovs.04-0515
8 T. Morimoto, T. Fujikado, J.-S. Choi, et al.Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats Invest Ophthalmol Vis Sci, 48 (10) (2007), pp. 4725-4732
9 H. Schmid, T. Herrmann, K. Kohler, et al.Neuroprotective effect of transretinal electrical stimulation on neurons in the inner nuclear layer of the degenerated retina Brain Res Bull, 79 (1) (2009), pp. 15-25, 10.1016/j.brainresbull.2008.12.013
10 Y.Q. Ni, D.K. Gan, H.D. Xu, et al.Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration Exp Neurol, 219 (2) (2009), pp. 439-452, 10.1016/j.expneurol.2009.06.016
11 V.T. Ciavatta, M. Kim, P. Wong, et al.Retinal expression of Fgf2 in RCS rats with subretinal microphotodiode array Invest Ophthalmol Vis Sci, 50 (10) (2009), pp. 4523-4530, 10.1167/iovs.08-2072
12 J.A. Mocko, M. Kim, A.E. Faulkner, et al.Effects of subretinal electrical stimulation in mer-KO mice Invest Ophthalmol Vis Sci, 52 (7) (2011), pp. 4223-4230, 10.1167/iovs.10-6750
13 A. Schatz, B. Arango-Gonzalez, D. Fischer, et al.Transcorneal electrical stimulation shows neuroprotective effects in retinas of light-exposed rats Invest Ophthalmol Vis Sci, 53 (9) (2012), pp. 5552-5561, 10.1167/iovs.12-10037
14 T. Morimoto, H. Kanda, M. Kondo, et al.Transcorneal electrical stimulation promotes survival of photoreceptors and improves retinal function in rhodopsin P347L transgenic rabbits Invest Ophthalmol Vis Sci, 53 (7) (2012), pp. 4254-4261, 10.1167/iovs.11-9067
15 M.A. Cameron, G.J. Suaning, N.H. Lovell, et al.Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice PLoS One, 8 (7) (2013), Article e68882, 10.1371/journal.pone.0068882
16 S. Rahmani, L. Bogdanowicz, J. Thomas, et al.Chronic delivery of low-level exogenous current preserves retinal function in pigmented P23H rat Vis Res, 76 (2013), pp. 105-113, 10.1016/j.visres.2012.10.016
17 Y. Tao, T. Chen, Z.Y. Liu, et al.Topographic quantification of the transcorneal electrical stimulation (TES)-induced protective effects on N-methyl- N-nitrosourea-treated retinas Invest Ophthalmol Vis Sci, 57 (11) (2016), pp. 4614-4624, 10.1167/iovs.16-19305
18 A.M. Hanif, M.K. Kim, J.G. Thomas, et al.Whole-eye electrical stimulation therapy preserves visual function and structure in P23H-1 rats Exp Eye Res, 149 (2016), pp. 75-83, 10.1016/j.exer.2016.06.010
19 S.K. Agadagba, X. Li, L.L.H. ChanExcitation of the pre-frontal and primary visual cortex in response to transcorneal electrical stimulation in retinal degeneration mice Front Neurosci, 14 (2020), p. 572299, 10.3389/fnins.2020.572299
20 H. Yu, S. Enayati, K. Chang, et al.Noninvasive electrical stimulation improves photoreceptor survival and retinal function in mice with inherited photoreceptor degeneration Invest Ophthalmol Vis Sci, 61 (4) (2020), p. 5, 10.1167/iovs.61.4.5
21 T. Morimoto, T. Miyoshi, S. Matsuda, et al.Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system Invest Ophthalmol Vis Sci, 46 (6) (2005), pp. 2147-2155, 10.1167/iovs.04-1339
22 K. Miyake, M. Yoshida, Y. Inoue, et al.Neuroprotective effect of transcorneal electrical stimulation on the acute phase of optic nerve injury Invest Ophthalmol Vis Sci, 48 (5) (2007), pp. 2356-2361, 10.1167/iovs.06-1329
23 Y. Okazaki, T. Morimoto, H. SawaiParameters of optic nerve electrical stimulation affecting neuroprotection of axotomized retinal ganglion cells in adult rats Neurosci Res, 61 (2) (2008), pp. 129-135, 10.1016/j.neures.2008.01.016
24 Y. Tagami, T. Kurimoto, T. Miyoshi, et al.Axonal regeneration induced by repetitive electrical stimulation of crushed optic nerve in adult rats Jpn J Ophthalmol, 53 (3) (2009), pp. 257-266, 10.1007/s10384-009-0657-8
25 T. Morimoto, T. Miyoshi, H. Sawai, et al.Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats Exp Eye Res, 90 (2) (2010), pp. 285-291, 10.1016/j.exer.2009.11.002
26 X. Wang, X. Mo, D. Li, et al.Neuroprotective effect of transcorneal electrical stimulation on ischemic damage in the rat retina Exp Eye Res, 93 (5) (2011), pp. 753-760, 10.1016/j.exer.2011.09.022
27 E.G. Sergeeva, A.B. Fedorov, P. Henrich-Noack, et al.Transcorneal alternating current stimulation induces EEG "aftereffects" only in rats with an intact visual system but not after severe optic nerve damage J Neurophysiol, 108 (9) (2012), pp. 2494-2500, 10.1152/jn.00341.2012
28 P. Henrich-Noack, S. Lazik, E. Sergeeva, et al.Transcorneal alternating current stimulation after severe axon damage in rats results in "long-term silent survivor" neurons Brain Res Bull, 95 (2013), pp. 7-14, 10.1016/j.brainresbull.2013.02.008
29 P. Henrich-Noack, N. Voigt, S. Prilloff, et al.Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage Neurosci Lett, 543 (2013), pp. 1-6, 10.1016/j.neulet.2013.03.013
30 H. Yin, H. Yin, W. Zhang, et al.Transcorneal electrical stimulation promotes survival of retinal ganglion cells after optic nerve transection in rats accompanied by reduced microglial activation and TNF-alpha expression Brain Res, 1650 (2016), pp. 10-20, 10.1016/j.brainres.2016.08.034
31 P. Henrich-Noack, E.G. Sergeeva, T. Eber, et al.Electrical brain stimulation induces dendritic stripping but improves survival of silent neurons after optic nerve damage Sci Rep, 7 (1) (2017), p. 627, 10.1038/s41598-017-00487-z
32 L. Fu, F.K. Fung, A.C. Lo, et al.Transcorneal electrical stimulation inhibits retinal microglial activation and enhances retinal ganglion cell survival after acute ocular hypertensive injury Transl Vis Sci Technol, 7 (3) (2018), p. 7, 10.1167/tvst.7.3.7
33 A.H. Jassim, M. Cavanaugh, J.S. Shah, et al.Transcorneal electrical stimulation reduces neurodegenerative process in a mouse model of glaucoma Ann Biomed Eng, 49 (2) (2021), pp. 858-870, 10.1007/s10439-020-02608-8
34 T. Osako, H. Chuman, T. Maekubo, et al.Effects of steroid administration and transcorneal electrical stimulation on the anatomic and electrophysiologic deterioration of nonarteritic ischemic optic neuropathy in a rodent model Jpn J Ophthalmol, 57 (4) (2013), pp. 410-415, 10.1007/s10384-012-0203-y
35 G. Willmann, K. Schäferhoff, M.D. Fischer, et al.Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats Invest Ophthalmol Vis Sci, 52 (10) (2011), pp. 7529-7537, 10.1167/iovs.11-7838
36 H. Liang, C. Baudouin, F. Behar-Cohen, et al.Protein kinase C-zeta mediates retinal degeneration in response to TNF J Neuroimmunol, 183 (1-2) (2007), pp. 104-110, 10.1016/j.jneuroim.2006.11.028
37 T. Kanamoto, N. Souchelnytskyi, T. Kurimoto, et al.Proteomic study of retinal proteins associated with transcorneal electric stimulation in rats J Ophthalmol, 2015 (2015), p. 492050, 10.1155/2015/492050
38 B. Kulsoom, T.S. Shamsi, N.A. Afsar, et al.Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: are we ready for Bcl-2-directed therapy? Cancer Manag Res, 10 (2018), pp. 403-416, 10.2147/cmar.S154608
39 B.L. HempsteadDissecting the diverse actions of pro- and mature neurotrophins Curr Alzheimer Res, 3 (1) (2006), pp. 19-24, 10.2174/156720506775697061
40 L.F. ReichardtNeurotrophin-regulated signalling pathways Philos Trans R Soc Lond B Biol Sci, 361 (1473) (2006), pp. 1545-1564, 10.1098/rstb.2006.1894
41 S.X. Bamji, M. Majdan, C.D. Pozniak, et al.The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death J Cell Biol, 140 (4) (1998), pp. 911-923, 10.1083/jcb.140.4.911
42 T. GordonElectrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans Neurotherapeutics, 13 (2) (2016), pp. 295-310, 10.1007/s13311-015-0415-1
43 A.S. Jack, C. Hurd, J. Martin, et al.Electrical stimulation as a tool to promote plasticity of the injured spinal cord J Neurotrauma, 37 (18) (2020), pp. 1933-1953, 10.1089/neu.2020.7033
44 M.P. Willand, M.A. Nguyen, G.H. Borschel, et al.Electrical stimulation to promote peripheral nerve regeneration Neurorehabilitation Neural Repair, 30 (5) (2016), pp. 490-496, 10.1177/1545968315604399
45 S.J. Pelletier, F. CicchettiCellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models Int J Neuropsychopharmacol, 18 (2) (2014), p. pyu047, 10.1093/ijnp/pyu047
46 B. Fritsch, J. Reis, K. Martinowich, et al.Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning Neuron, 66 (2) (2010), pp. 198-204, 10.1016/j.neuron.2010.03.035
47 S. Pöyhönen, S. Er, A. Domanskyi, et al.Effects of neurotrophic factors in glial cells in the central nervous system: expression and properties in neurodegeneration and injury Front Physiol, 10 (2019), p. 486, 10.3389/fphys.2019.00486
48 S. Koyama, T. Haruyama, E. Kobatake, et al.Electrically induced NGF production by astroglial cells Nat Biotechnol, 15 (2) (1997), pp. 164-166, 10.1038/nbt0297-164
49 S. Enayati, K. Chang, H. Achour, et al.Electrical stimulation induces retinal müller cell proliferation and their progenitor cell potential Cells, 9 (3) (2020), p. 781, 10.3390/cells9030781
50 T. Sato, T. Fujikado, T. Morimoto, et al.Effect of electrical stimulation on IGF-1 transcription by L-type calcium channels in cultured retinal Müller cells Jpn J Ophthalmol, 52 (3) (2008), pp. 217-223, 10.1007/s10384-008-0533-y
51 T. Sato, T. Fujikado, T.S. Lee, et al.Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Müller cells Invest Ophthalmol Vis Sci, 49 (10) (2008), pp. 4641-4646, 10.1167/iovs.08-2049
52 I.D. Vainchtein, A.V. MolofskyAstrocytes and microglia: in sickness and in health Trends Neurosci, 43 (3) (2020), pp. 144-154, 10.1016/j.tins.2020.01.003
53 M. Dhaynaut, G. Sprugnoli, D. Cappon, et al.Impact of 40 Hz transcranial alternating current stimulation on cerebral tau burden in patients with Alzheimer's disease: a case series J Alzheimers Dis, 85 (4) (2022), pp. 1667-1676, 10.3233/jad-215072
54 K.Y. Zhang, G. Rui, J.P. Zhang, et al.Cathodal tDCS exerts neuroprotective effect in rat brain after acute ischemic stroke BMC Neurosci, 21 (1) (2020), p. 21, 10.1186/s12868-020-00570-8
55 K. Kuwahara, T. Sasaki, T. Yasuhara, et al.Long-Term continuous cervical spinal cord stimulation exerts neuroprotective effects in experimental Parkinson's disease Front Aging Neurosci, 12 (2020), p. 164, 10.3389/fnagi.2020.00164
56 Y. Chen, G. Zhu, D. Liu, et al.Subthalamic nucleus deep brain stimulation suppresses neuroinflammation by Fractalkine pathway in Parkinson's disease rat model Brain Behav Immun, 90 (2020), pp. 16-25, 10.1016/j.bbi.2020.07.035
57 A.K. Gellner, J. Reis, B.L. Fiebich, et al.Electrified microglia: impact of direct current stimulation on diverse properties of the most versatile brain cell Brain Stimul, 14 (5) (2021), pp. 1248-1258, 10.1016/j.brs.2021.08.007
58 S.J. Pelletier, M. Lagacé, I. St-Amour, et al.The morphological and molecular changes of brain cells exposed to direct current electric field stimulation Int J Neuropsychopharmacol, 18 (5) (2014), p. pyu090, 10.1093/ijnp/pyu090
59 Y. Ruan, S. Jiang, A. GerickeAge-related macular degeneration: role of oxidative stress and blood vessels Int J Mol Sci, 22 (3) (2021), p. 1296, 10.3390/ijms22031296
60 M. Lang, A. Harris, T.A. Ciulla, et al.Vascular dysfunction in retinitis pigmentosa Acta Ophthalmol, 97 (7) (2019), pp. 660-664, 10.1111/aos.14138
61 J. Flammer, S. Orgül, V.P. Costa, et al.The impact of ocular blood flow in glaucoma Prog Retin Eye Res, 21 (4) (2002), pp. 359-393, 10.1016/s1350-9462(02)00008-3
62 C. Iadecola, M. Nakai, S. Mraovitch, et al.Global increase in cerebral metabolism and blood flow produced by focal electrical stimulation of dorsal medullary reticular formation in rat Brain Res, 272 (1) (1983), pp. 101-114, 10.1016/0006-8993(83)90367-0
63 M. VisocchiNeuromodulation of cerebral blood flow by spinal cord electrical stimulation: the role of the Italian school and state of art J Neurosurg Sci, 52 (2) (2008), pp. 41-47
64 N. Babault, C. Cometti, N.A. Maffiuletti, et al.Does electrical stimulation enhance post-exercise performance recovery? Eur J Appl Physiol, 111 (10) (2011), pp. 2501-2507, 10.1007/s00421-011-2117-7
65 H.K. Jin, T.Y. Hwang, S.H. ChoEffect of electrical stimulation on blood flow velocity and vessel size Open Med, 12 (2017), pp. 5-11, 10.1515/med-2017-0002
66 M. Bahr-Hosseini, M. BiksonNeurovascular-modulation: a review of primary vascular responses to transcranial electrical stimulation as a mechanism of action Brain Stimul, 14 (4) (2021), pp. 837-847, 10.1016/j.brs.2021.04.015
67 T. Kurimoto, S. Oono, H. Oku, et al.Transcorneal electrical stimulation increases chorioretinal blood flow in normal human subjects Clin Ophthalmol, 4 (2010), pp. 1441-1446, 10.2147/opth.S14573
68 A.K. Bittner, K. Seger, R. Salveson, et al.Randomized controlled trial of electro-stimulation therapies to modulate retinal blood flow and visual function in retinitis pigmentosa Acta Ophthalmol, 96 (3) (2018), pp. e366-e376, 10.1111/aos.13581
69 M.D. Volpe-Waizel, H.C. Zuche, U. Muller, et al.Metabolic monitoring of transcorneal electrical stimulation in retinitis pigmentosa Graefes Arch Clin Exp Ophthalmol, 258 (1) (2020), pp. 79-87, 10.1007/s00417-019-04522-9
70 W.H. Dobelle, M.G. MladejovskyPhosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind J Physiol, 243 (2) (1974), pp. 553-576, 10.1113/jphysiol.1974.sp010766
71 Z. Ma, P. Cao, P. Sun, et al.Optical imaging of visual cortical responses evoked by transcorneal electrical stimulation with different parameters Invest Ophthalmol Vis Sci, 55 (8) (2014), pp. 5320-5331, 10.1167/iovs.14-14600
72 A. Fedorov, S. Jobke, V. Bersnev, et al.Restoration of vision after optic nerve lesions with noninvasive transorbital alternating current stimulation: a clinical observational study Brain Stimul, 4 (4) (2011), pp. 189-201, 10.1016/j.brs.2011.07.007
73 B.A. Sabel, A.B. Fedorov, N. Naue, et al.Non-invasive alternating current stimulation improves vision in optic neuropathy Restor Neurol Neurosci, 29 (6) (2011), pp. 493-505, 10.3233/rnn-2011-0624
74 S. Schmidt, A. Mante, M. Ronnefarth, et al.Progressive enhancement of alpha activity and visual function in patients with optic neuropathy: a two-week repeated session alternating current stimulation study Brain Stimul, 6 (1) (2013), pp. 87-93, 10.1016/j.brs.2012.03.008
75 C. Gall, S. Schmidt, M.P. Schittkowski, et al.Alternating current stimulation for vision restoration after optic nerve damage: a randomized clinical trial PLoS One, 11 (6) (2016), Article e0156134, 10.1371/journal.pone.0156134
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构