1. ,Belgium
2. ,Belgium
3. ,Qatar
4. ,Peshawar,Pakistan
5. ,Australia
扫 描 看 全 文
Modelling ocular ageing in adults with well-controlled type I diabetes[J]. 眼科实践与研究新进展, 2022,2(2):100048.
Jos J. Rozema, Adnan Khan, David A. Atchison. Modelling ocular ageing in adults with well-controlled type I diabetes[J]. AOPR, 2022,2(2):100048.
Modelling ocular ageing in adults with well-controlled type I diabetes[J]. 眼科实践与研究新进展, 2022,2(2):100048. DOI: 10.1016/j.aopr.2022.100048.
Jos J. Rozema, Adnan Khan, David A. Atchison. Modelling ocular ageing in adults with well-controlled type I diabetes[J]. AOPR, 2022,2(2):100048. DOI: 10.1016/j.aopr.2022.100048.
Purpose,To develop a paraxial eye model based on a previously collected cohort of adults with well-controlled type 1 diabetes mellitus (,DM1,) and a limited range of refractive errors.,Methods,The study used the previously published biometric data of ,72, participants (Age: ,41.5 ± 12.4, years) with ,DM1,. Measurements included objective refraction, anterior and posterior corneal radii of curvatures, and internal distances. Moreover, phakometry was used to determine the lens radii of curvature and lens equivalent indices, from which the lens powers were calculated. A multivariate linear regression was performed for each biometric parameter with respect to current age (,Age,), the time since the onset of diabetes (,T,db,), and current levels of glycated hemoglobin (,HbA1c,). The vitreous chamber depth was determined from other distances, and lens equivalent index was chosen to balance the models. These were compared with an existing model for non-diabetic eyes.,Results,Some dependent parameters were not affected by the independent variables (spherical equivalent, anterior corneal radius of curvature, central corneal thickness), some were affected by time since onset (the lens radii of curvatures, anterior chamber depth) and others were affected by both age and time since onset (posterior corneal radius of curvature, lens thickness, axial length). None of the dependent parameters were affected by current levels of ,HbA1c,.,Conclusions,The proposed model accurately describes the age-related changes in the eyes of people with ,DM1,. In this description the age of diabetes onset plays an important role, especially if the diabetes onset occurred during childhood.
Purpose,To develop a paraxial eye model based on a previously collected cohort of adults with well-controlled type 1 diabetes mellitus (,DM1,) and a limited range of refractive errors.,Methods,The study used the previously published biometric data of ,72, participants (Age: ,41.5 ± 12.4, years) with ,DM1,. Measurements included objective refraction, anterior and posterior corneal radii of curvatures, and internal distances. Moreover, phakometry was used to determine the lens radii of curvature and lens equivalent indices, from which the lens powers were calculated. A multivariate linear regression was performed for each biometric parameter with respect to current age (,Age,), the time since the onset of diabetes (,T,db,), and current levels of glycated hemoglobin (,HbA1c,). The vitreous chamber depth was determined from other distances, and lens equivalent index was chosen to balance the models. These were compared with an existing model for non-diabetic eyes.,Results,Some dependent parameters were not affected by the independent variables (spherical equivalent, anterior corneal radius of curvature, central corneal thickness), some were affected by time since onset (the lens radii of curvatures, anterior chamber depth) and others were affected by both age and time since onset (posterior corneal radius of curvature, lens thickness, axial length). None of the dependent parameters were affected by current levels of ,HbA1c,.,Conclusions,The proposed model accurately describes the age-related changes in the eyes of people with ,DM1,. In this description the age of diabetes onset plays an important role, especially if the diabetes onset occurred during childhood.
DiabetesEye modelRefractive error
1 Q. Mohamed, M.C. Gillies, T.Y. WongManagement of diabetic retinopathy: a systematic review JAMA Ophthalmol, 298 (8) (2007), pp. 902-916, 10.1001/jama.298.8.902
2 N. Busted, T. Olsen, O. SchmitzClinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus Br J Ophthalmol, 65 (10) (1981), pp. 687-690, 10.1136/bjo.65.10.687
3 L.-I. Larsson, W.M. Bourne, J.M. Pach, et al.Structure and function of the corneal endothelium in diabetes mellitus type I and type II Arch Ophthalmol, 114 (1) (1996), pp. 9-14, 10.1001/archopht.1996.01100130007001
4 J. Lee, B. Oum, H. Choi, et al.Differences in corneal thickness and corneal endothelium related to duration in diabetes Eye, 20 (3) (2006), pp. 315-318, 10.1038/sj.eye.6701868
5 Y. Ozdamar, B. Cankaya, S. Ozalp, et al.Is there a correlation between diabetes mellitus and central corneal thickness? J Glaucoma, 19 (9) (2010), pp. 613-616
6 A.M. Roszkowska, C.G. Tringali, P. Colosi, et al.Corneal endothelium evaluation in type I and type II diabetes mellitus Ophthalmologica, 213 (4) (1999), pp. 258-261, 10.1159/000027431
7 D.H. Su, T.Y. Wong, W.-L. Wong, et al.Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study e961 Ophthalmology, 115 (6) (2008), pp. 964-968, 10.1016/j.ophtha.2007.08.021
8 Adnan, M. Suheimat, N. Efron, et al.Biometry of eyes in type 1 diabetes Biomed Opt Express, 6 (3) (2015), pp. 702-715, 10.1364/BOE.6.000702
9 K. Inoue, S. Kato, Y. Inoue, et al.The corneal endothelium and thickness in type II diabetes mellitus Jap J Ophthalmol, 46 (1) (2002), pp. 65-69
10 G.M. Keoleian, J.M. Pach, D.O. Hodge, et al.Structural and functional studies of the corneal endothelium in diabetes mellitus Am J Ophthalmol, 113 (1) (1992), pp. 64-70, 10.1016/S0002-9394(14)75755-1
11 N.G. Wiemer, M. Dubbelman, P.J. Kostense, et al.The influence of chronic diabetes mellitus on the thickness and the shape of the anterior and posterior surface of the cornea Cornea, 26 (10) (2007), pp. 1165-1170, 10.1097/ICO.0b013e31814fa82f
12 M. Ziadi, P. Moiroux, P. d’Athis, et al.Assessment of induced corneal hypoxia in diabetic patients Cornea, 21 (5) (2002), pp. 453-457
13 M. Cahill, P. Eustace, V. de JesusPupillary autonomic denervation with increasing duration of diabetes mellitus Br J Ophthalmol, 85 (10) (2001), pp. 1225-1230
14 A. HreidarssonPupil size in insulin-dependent diabetes: relationship to duration, metabolic control, and long-term manifestations Diabetes, 31 (5) (1982), pp. 442-448, 10.2337/diab.31.5.442
15 H.-L. Lei, K.-J. Yang, C.-C. Sun, et al.Obtained mydriasis in long-term type 2 diabetic patients J Ocul Pharmacol Therapeut, 27 (6) (2011), pp. 599-602, 10.1089/jop.2011.0090
16 D. Pittasch, R. Lobmann, W. Behrens-Baumann, et al.Pupil signs of sympathetic autonomic neuropathy in patients with type 1 diabetes Diabetes Care, 25 (9) (2002), pp. 1545-1550, 10.2337/diacare.25.9.1545
17 Y. Yang, Y. Yu, K. YaoPupillary dysfunction in type 2 diabetes mellitus to refine the early diagnosis of diabetic autonomic neuropathy Neuro Ophthalmol, 30 (1) (2006), pp. 17-21, 10.1080/01658100600599527
18 A. Zaczek, C. ZetterströmThe effect of phenylephrine and pilocarpine on pupil size and aqueous flare intensity in patients with diabetes mellitus Acta Ophthalmol, 76 (4) (1998), pp. 413-416, 10.1034/j.1600-0420.1998.760405.x
19 S. Shrestha, K.R. KainiThe influence of diabetes mellitus on lenticular thickness Am J Publ Health Res, 3 (5A) (2015), pp. 91-94, 10.12691/ajphr-3-5A-19
20 A. Bron, J. Sparrow, N. Brown, et al.The lens in diabetes Eye, 7 (2) (1993), pp. 260-275, 10.1038/eye.1993.60
21 N. Brown, J. HungerfordThe influence of the size of the lens in ocular disease Trans Ophthalmol Soc U K, 102 (1982), pp. 359-363
22 H.C. Fledelius, K. MiyamotoDiabetic myopia-is it lens-induced? An oculometric study comprising ultrasound measurements Acta Ophthalmol, 65 (4) (1987), pp. 469-473, 10.1111/j.1755-3768.1987.tb07025.x
23 N. Løgstrup, A. Sjølie, K. Kyvik, et al.Lens thickness and insulin dependent diabetes mellitus: a population based twin study Br J Ophthalmol, 80 (5) (1996), pp. 405-408, 10.1136/bjo.80.5.405
24 N. Løgstrup, A.K. Sjølie, K.O. Kyvik, et al.Long term influence of insulin dependent diabetes mellitus on refraction and its components: a population based twin study Br J Ophthalmol, 81 (5) (1997), pp. 343-349, 10.1136/bjo.81.5.343
25 L. Pierro, R. Brancato, E. Zaganelli, et al.Correlation of lens thickness with blood glucose control in diabetes mellitus Acta Ophthalmol, 74 (6) (1996), pp. 539-541, 10.1111/j.1600-0420.1996.tb00730.x
26 S.-M. Saw, T.Y. Wong, S. Ting, et al.The relationship between anterior chamber depth and the presence of diabetes in the Tanjong Pagar Survey Am J Ophthalmol, 144 (2) (2007), pp. 325-326, 10.1016/j.ajo.2007.03.038
27 J.M. Sparrow, A.J. Bron, N. Brown, et al.Biometry of the crystalline lens in early-onset diabetes Br J Ophthalmol, 74 (11) (1990), pp. 654-660, 10.1136/bjo.74.11.654
28 N.G. Wiemer, M. Dubbelman, E.A. Hermans, et al.Changes in the internal structure of the human crystalline lens with diabetes mellitus type 1 and type 2 Ophthalmology, 115 (11) (2008), pp. 2017-2023, 10.1016/j.ophtha.2008.06.032
29 N.G. Wiemer, M. Dubbelman, P.J. Kostense, et al.The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens Ophthalmology, 115 (10) (2008), pp. 1679-1686, 10.1016/j.ophtha.2008.03.019
30 Adnan, J.M. Pope, F. Sepehrband, et al.Lens shape and refractive index distribution in type 1 diabetes Invest Ophthalmol Vis Sci, 56 (8) (2015), pp. 4759-4766, 10.1167/iovs.15-16430
31 Adnan, M. Suheimat, A. Mathur, et al.Straylight, lens yellowing and aberrations of eyes in type 1 diabetes Biomed Opt Express, 6 (4) (2015), pp. 1282-1292, 10.1364/BOE.6.001282
32 N.P. Davies, A.B. MorlandColor matching in diabetes: optical density of the crystalline lens and macular pigments Invest Ophthalmol Vis Sci, 43 (1) (2002), pp. 281-289
33 M. Lutze, G. BresnickLenses of diabetic patients yellow at an accelerated rate similar to older normals Invest Ophthalmol Vis Sci, 32 (1) (1991), pp. 194-199
34 J. Liu, X. Wang, J. Wang, et al.Optical quality and intraocular scattering in the diabetic eye without diabetic retinopathy Optom Vis Sci, 96 (4) (2019), pp. 248-255, 10.1097/OPX.0000000000001360
35 N. Jacobsen, H. Jensen, H. Lund-Andersen, et al.Is poor glycaemic control in diabetic patients a risk factor of myopia? Acta Ophthalmol, 86 (5) (2008), pp. 510-514, 10.1111/j.1600-0420.2007.01104.x
36 H.C. FledeliusIs myopia getting more frequent? A cross-sectional study of 1416 Danes aged 16 years+ Acta Ophthalmol, 61 (4) (1983), pp. 545-559, 10.1111/j.1755-3768.1983.tb04344.x
37 E. Song, D.J. Qian, S. Wang, et al.Refractive error in Chinese with type 2 diabetes and its association with glycaemic control Clin Exp Optom, 101 (2) (2018), pp. 213-219, 10.1111/cxo.12606
38 M. Shahidi, N.P. Blair, M. Mori, et al.Optical section retinal imaging and wavefront sensing in diabetes Optom Vis Sci, 81 (10) (2004), pp. 778-784
39 A.K. Valeshabad, J. Wanek, P. Grant, et al.Wavefront error correction with adaptive optics in diabetic retinopathy Optom Vis Sci, 91 (10) (2014), pp. 1238-1243, 10.1097/OPX.0000000000000252
40 Adnan, N. Efron, A. Mathur, et al.Amplitude of accommodation in type 1 diabetes Invest Ophthalmol Vis Sci, 55 (10) (2014), pp. 7014-7018, 10.1167/iovs.14-15376
41 G. Gwinup, A. VillarrealRelationship of serum glucose concentration to changes in refraction Diabetes, 25 (1) (1976), pp. 29-31
42 N. Pritchard, K. Edwards, C. Dehghani, et al.Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (LANDMark): study design and baseline characteristics Diabetes Res Clin Pract, 104 (2) (2014), pp. 248-256, 10.1016/j.diabres.2014.02.011
43 L.T. Chylack, J.K. Wolfe, D.M. Singer, et al.The lens opacities classification system III Arch Ophthalmol, 111 (6) (1993), pp. 831-836, 10.1001/archopht.1993.01090060119035
44 D.A. Atchison, G. SmithChromatic dispersions of the ocular media of human eyes J Opt Soc Am A, 22 (1) (2005), pp. 29-37, 10.1364/JOSAA.22.000029
45 D.A. AtchisonAge-related paraxial schematic emmetropic eyes Ophthalmic Physiol Opt, 29 (1) (2009), pp. 58-64, 10.1111/j.1475-1313.2008.00598.x
46 B.A. Moffat, D.A. Atchison, J.M. PopeExplanation of the lens paradox Optom Vis Sci, 79 (3) (2002), pp. 148-150
47 Rozema JJ, Dankert S, Iribarren R: Normal Refractive Development from before Birth until Adulthood (in review).
48 J. Rozema, S. Dankert, R. Iribarren, et al.Axial growth and lens power loss at myopia onset in Singaporean children Invest Ophthalmol Vis Sci, 60 (8) (2019), pp. 3091-3099, 10.1167/iovs.18-26247
49 D.O. Mutti, G.L. Mitchell, L.T. Sinnott, et al.Corneal and crystalline lens dimensions before and after myopia onset Optom Vis Sci, 89 (3) (2012), Article 251262, 10.1097/OPX.0b013e3182418213
50 Y. Xiao, T. Li, Y. Jia, et al.Influence of type 1 diabetes mellitus on the ocular biometry of Chinese children 2019 J Ophthalmol (2019), Article 7216490, 10.1155/2019/7216490
51 M.M. Uzel, U. Elgin, E. Sen, et al.Comparison of anterior segment parameters in juvenile diabetes mellitus and healthy eyes Eur J Ophthalmol, 26 (6) (2016), pp. 618-622, 10.5301/ejo.5000764
52 H. Öztürk, B. Özen, H. Manyas, et al.Can ocular changes be detected early in children and adolescents with type 1 diabetes mellitus without retinopathy by using optical biometry and optical coherence tomography? Int Ophthalmol, 40 (2020), pp. 2503-2514, 10.1007/s10792-020-01430-4
53 P. HerseEffects of hyperglycaemia on ocular development in rabbit: refraction and biometric changes Ophthalmic Physiol Opt, 25 (2) (2005), pp. 97-104, 10.1111/j.1475-1313.2004.00262.x
54 E. Sırakaya, B. Küçük, H.A. SırakayaThe influence of type 1 diabetes mellitus on amplitude of accommodation Curr Eye Res, 45 (7) (2020), pp. 873-878, 10.1080/02713683.2020.1726406
55 J. Gwiazda, J. Bauer, F. Thorn, et al.A dynamic relationship between myopia and blur-driven accommodation in school-aged children Vis Research, 35 (9) (1995), pp. 1299-1304, 10.1016/0042-6989(94)00238-H
56 S. Kaštelan, A. Gverović-Antunica, G. Pelčić, et al.Refractive changes associated with diabetes mellitus Sem Ophthalmol, Taylor & Francis (2018), pp. 838-845 https://doi.org/10.1080/08820538.2018.1519582
57 F. Okamoto, H. Sone, T. Nonoyama, et al.Refractive changes in diabetic patients during intensive glycaemic control Br J Ophthalmol, 84 (10) (2000), pp. 1097-1102, 10.1136/bjo.84.10.1097
58 B. Huntjens, W.N. Charman, H. Workman, et al.Short-term stability in refractive status despite large fluctuations in glucose levels in diabetes mellitus type 1 and 2 PLoS One, 7 (12) (2012), Article e52947, 10.1371/journal.pone.0052947
59 M.-C. Tai, S.-Y. Lin, J.-T. Chen, et al.Sweet hyperopia: refractive changes in acute hyperglycemia Eur J Ophthalmol, 16 (5) (2006), pp. 663-666, 10.1177/112067210601600501
60 J. Wallman, J. WinawerHomeostasis of eye growth and the question of myopia Neuron, 43 (4) (2004), pp. 447-468, 10.1016/j.neuron.2004.08.008
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构