浏览全部资源
扫码关注微信
1. ,Wenzhou,China
2. Eye Center of the Second Affiliated Hospital, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Zhejiang University School of Medicine,Hangzhou,China
Published:2024,
移动端阅览
LINGMAN ZHENG, ZHIYONG LIAO, JIAN ZOU. Animal modeling for myopia. [J]. Aopr, 2024, 4(4): 173-181.
LINGMAN ZHENG, ZHIYONG LIAO, JIAN ZOU. Animal modeling for myopia. [J]. Aopr, 2024, 4(4): 173-181. DOI: 10.1016/j.aopr.2024.06.001.
BackgroundMyopia is one of the most common eye diseases globally
and has become an increasingly serious health concern among adolescents. Understanding the factors contributing to the onset of myopia and the strategies to slow its progression is critical to reducing its prevalence.Main textAnimal models are key to understanding of the etiology of human diseases. Various experimental animal models have been developed to mimic human myopia
including chickens
rhesus monkeys
marmosets
mice
tree shrews
guinea pigs and zebrafish. Studies using these animal models have provided evidences and perspectives on the regulation of eye growth and refractive development. This review summarizes the characteristics of these models
the induction methods
common indicators of myopia in animal models
and recent findings on the pathogenic mechanism of myopia.ConclusionsInvestigations using experimental animal models have provided valuable information and insights into the pathogenic mechanisms of human myopia and its treatment strategies.
MyopiaExperimental myopia animal modelsForm-deprivated myopiaLens-induced myopiaEye growthRefractive developmentCorneal remodeling
1 P.N. Baird, S.M. Saw, C. Lanca, et al.Myopia Nat Rev Dis Prim, 6 (1) (2020), p. 99, 10.1038/s41572-020-00231-4
2 J.S. Wolffsohn, D.I. Flitcroft, K.L. Gifford, et al.Imi - myopia control reports overview and introduction Invest Ophthalmol Vis Sci, 60 (3) (2019), pp. M1-m19, 10.1167/iovs.18-25980
3 B.A. Holden, T.R. Fricke, D.A. Wilson, et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050 Ophthalmology, 123 (5) (2016), pp. 1036-1042, 10.1016/j.ophtha.2016.01.006
4 H. Hashemi, S. Heydarian, E. Hooshmand, et al.The prevalence and risk factors for keratoconus: a systematic review and meta-analysis Cornea, 39 (2) (2020), pp. 263-270, 10.1097/ico.0000000000002150
5 M.A. Díez Ajenjo, M.C. García Domene, C. Peris MartínezRefractive changes in nuclear, cortical and posterior subcapsular cataracts. effect of the type and grade J Opt, 8 (2) (2015), pp. 86-92, 10.1016/j.optom.2014.07.006
6 C.C. Wei, Y.J. Kung, C.S. Chen, et al.Allergic conjunctivitis-induced retinal inflammation promotes myopia progression EBioMedicine, 28 (2018), pp. 274-286, 10.1016/j.ebiom.2018.01.024
7 D. Troilo, E.L. Smith 3rd, D.L. Nickla, et al.Imi - report on experimental models of emmetropization and myopia Invest Ophthalmol Vis Sci, 60 (3) (2019), pp. M31-m88, 10.1167/iovs.18-25967
8 L.A. Ostrin, E. Harb, D.L. Nickla, et al.IMI-the dynamic choroid: new insights, challenges, and potential significance for human myopia Invest Ophthalmol Vis Sci, 64 (6) (2023), p. 4, 10.1167/iovs.64.6.4
9 J.A. Rada, S. Shelton, T.T. NortonThe sclera and myopia Exp Eye Res, 82 (2) (2006), pp. 185-200, 10.1016/j.exer.2005.08.009
10 P.N. Baird, M. Schäche, M. DiraniThe GEnes in Myopia (GEM) study in understanding the aetiology of refractive errors Prog Retin Eye Res, 29 (6) (2010), pp. 520-542, 10.1016/j.preteyeres.2010.05.004
11 M.S. Tedja, A.E.G. Haarman, M.A. Meester-Smoor, et al.Imi - myopia genetics report Invest Ophthalmol Vis Sci, 60 (3) (2019), pp. M89-m105, 10.1167/iovs.18-25965
12 V.J. Verhoeven, P.G. Hysi, R. Wojciechowski, et al.Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia Nat Genet, 45 (3) (2013), pp. 314-318, 10.1038/ng.2554
13 M.S. Tedja, R. Wojciechowski, P.G. Hysi, et al.Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error Nat Genet, 50 (6) (2018), pp. 834-848, 10.1038/s41588-018-0127-7
14 N. Ghorbani Mojarrad, D. Plotnikov, C. Williams, et al.Association between polygenic risk score and risk of myopia JAMA Ophthalmol, 138 (1) (2020), pp. 7-13, 10.1001/jamaophthalmol.2019.4421
15 P.G. Hysi, H. Choquet, A.P. Khawaja, et al.Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia Nat Genet, 52 (4) (2020), pp. 401-407, 10.1038/s41588-020-0599-0
16 E.T. Grochowski, K. Pietrowska, T. Kowalczyk, et al.Omics in myopia J Clin Med, 9 (11) (2020), 10.3390/jcm9113464
17 C. Liang, F. Li, C. Gu, et al.Metabolomic profiling of ocular tissues in rabbit myopia: uncovering differential metabolites and pathways Exp Eye Res, 240 (2024), Article 109796, 10.1016/j.exer.2024.109796
18 A.R. Harper, J.A. SummersThe dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development Exp Eye Res, 133 (2015), pp. 100-111, 10.1016/j.exer.2014.07.015
19 T. Ueta, S. Makino, Y. Yamamoto, et al.Pathologic myopia: an overview of the current understanding and interventions Glob Health Med, 2 (3) (2020), pp. 151-155, 10.35772/ghm.2020.01007
20 V. Koh, C. Tan, P.T. Tan, et al.Myopic maculopathy and optic disc changes in highly myopic young asian eyes and impact on visual acuity REPLY Am J Ophthalmol, 168 (2016) 296-296
21 K. Ohno-Matsui, T.Y.Y. Lai, C.C. Lai, et al.Updates of pathologic myopia Prog Retin Eye Res, 52 (2016), pp. 156-187, 10.1016/j.preteyeres.2015.12.001
22 K. Ohno-Matsui, P.C. Wu, K. Yamashiro, et al.IMI pathologic myopia Invest Ophthalmol Vis Sci, 62 (5) (2021), p. 5, 10.1167/iovs.62.5.5
23 T.N. Wiesel, E. RaviolaMyopia and eye enlargement after neonatal lid fusion in monkeys Nature, 266 (5597) (1977), pp. 66-68
24 A. Glasser, C.J. Murphy, D. Troilo, et al.The mechanism of lenticular accommodation in chicks Vis Res, 35 (11) (1995), pp. 1525-1540
25 L.A. Ostrin, Y. Liu, V. Choh, et al.The role of the iris in chick accommodation Invest Ophthalmol Vis Sci, 52 (7) (2011), pp. 4710-4716, 10.1167/iovs.10-6819
26 S.L. Bruhn, C.L. CepkoDevelopment of the pattern of photoreceptors in the chick retina J Neurosci, 16 (4) (1996), pp. 1430-1439, 10.1523/jneurosci.16-04-01430.1996
27 Y.A. Kram, S. Mantey, J.C. CorboAvian cone photoreceptors tile the retina as five independent, self-organizing mosaics PLoS One, 5 (2) (2010), p. e8992, 10.1371/journal.pone.0008992
28 V.B. MorrisAn afoveate area centralis in the chick retina J Comp Neurol, 210 (2) (1982), pp. 198-203, 10.1002/cne.902100210
29 N.A. McBrien, H.O. Moghaddam, A.P. ReederAtropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism Invest Ophthalmol Vis Sci, 34 (1) (1993), pp. 205-215
30 L.A. Ostrin, A. GlasserAutonomic drugs and the accommodative system in rhesus monkeys Exp Eye Res, 90 (1) (2010), pp. 104-112, 10.1016/j.exer.2009.09.015
31 D. Troilo, N. Quinn, K. BakerAccommodation and induced myopia in marmosets Vis Res, 47 (9) (2007), pp. 1228-1244, 10.1016/j.visres.2007.01.018
32 K.H. Lin, T. Tran, S. Kim, et al.Advanced retinal imaging and ocular parameters of the rhesus macaque eye Transl Vis Sci Technol, 10 (6) (2021), p. 7, 10.1167/tvst.10.6.7
33 A. Hendrickson, D. Troilo, D. Possin, et al.Development of the neural retina and its vasculature in the marmoset Callithrix jacchus J Comp Neurol, 497 (2) (2006), pp. 270-286, 10.1002/cne.20996
34 B. Zeng, H. Zhang, Y. Peng, et al.Spontaneous fundus lesions in elderly monkeys: an ideal model for age-related macular degeneration and high myopia clinical research Life Sci, 282 (2021), Article 119811, 10.1016/j.lfs.2021.119811
35 V.A. Barathi, V.G. Boopathi, E.P. Yap, et al.Two models of experimental myopia in the mouse Vis Res, 48 (7) (2008), pp. 904-916, 10.1016/j.visres.2008.01.004
36 T.V. Tkatchenko, Y. Shen, R.D. Braun, et al.Photopic visual input is necessary for emmetropization in mice Exp Eye Res, 115 (2013), pp. 87-95, 10.1016/j.exer.2013.06.025
37 M.L. Applebury, M.P. Antoch, L.C. Baxter, et al.The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning Neuron, 27 (3) (2000), pp. 513-523, 10.1016/s0896-6273(00)00062-3
38 H.S. Yang, M.H. Vitaterna, A.D. Laposky, et al.Genetic analysis of daily physical activity using a mouse chromosome substitution strain Physiol Genom, 39 (1) (2009), pp. 47-55, 10.1152/physiolgenomics.00066.2009
39 C.S. Kee, L.F. Hung, Y. Qiao, et al.Astigmatism in infant monkeys reared with cylindrical lenses Vis Res, 43 (26) (2003), pp. 2721-2739, 10.1016/S0042-6989(03)00469-3
40 Y. Geng, L.A. Schery, R. Sharma, et al.Optical properties of the mouse eye Biomed Opt Express, 2 (4) (2011), pp. 717-738, 10.1364/boe.2.000717
41 F. Schaeffel, E. Burkhardt, H.C. Howland, et al.Measurement of refractive state and deprivation myopia in two strains of mice Optom Vis Sci, 81 (2) (2004), pp. 99-110
42 T.V. Tkatchenko, Y. Shen, A.V. TkatchenkoMouse experimental myopia has features of primate myopia Invest Ophthalmol Vis Sci, 51 (3) (2010), pp. 1297-1303, 10.1167/iovs.09-4153
43 Y. Geng, L.A. Schery, R. Sharma, et al.Optical properties of the mouse eye Biomed Opt Express, 2 (4) (2011), pp. 717-738
44 T.V. Tkatchenko, Y. Shen, A.V. TkatchenkoAnalysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging Invest Ophthalmol Vis Sci, 51 (1) (2010), pp. 21-27, 10.1167/iovs.08-2767
45 X. Lin, B.J. Wang, Y.C. Wang, et al.Scleral ultrastructure and biomechanical changes in rabbits after negative lens application Int J Ophthalmol, 11 (3) (2018), pp. 354-362, 10.18240/ijo.2018.03.02
46 B. Juliusson, A. Bergström, P. Röhlich, et al.Complementary cone fields of the rabbit retina Invest Ophthalmol Vis Sci, 35 (3) (1994), pp. 811-818
47 M. Ji, H. Liu, S. Ma, et al.Stable atropine loaded film as a potential ocular delivery system for treatment of myopia Pharm Res (N Y), 38 (11) (2021), pp. 1931-1946, 10.1007/s11095-021-03135-4
48 L. Tong, D. Cui, J. ZengTopical bendazol inhibits experimental myopia progression and decreases the ocular accumulation of HIF-1α protein in young rabbits Ophthalmic Physiol Opt, 40 (5) (2020), pp. 567-576, 10.1111/opo.12717
49 H. SomiyaDynamic mechanism of visual accommodation in teleosts: structure of the lens muscle and its nerve control Proc R Soc Lond B Biol Sci, 230 (1258) (1987), pp. 77-91, 10.1098/rspb.1987.0010
50 P.A. Raymond, L.K. BarthelA moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina Int J Dev Biol, 48 (8-9) (2004), pp. 935-945, 10.1387/ijdb.041873pr
51 J. Zou, X. Wang, X. WeiCrb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains Dev Cell, 22 (6) (2012), pp. 1261-1274, 10.1016/j.devcel.2012.03.007
52 Q. Hao, M. Zheng, K. Weng, et al.Crumbs proteins stabilize the cone mosaics of photoreceptors and improve vision in zebrafish J Genet Genomics, 48 (1) (2021), pp. 52-62, 10.1016/j.jgg.2020.12.002
53 D.H. BrainardColor and the cone mosaic Annu Rev Vis Sci, 1 (2015), pp. 519-546, 10.1146/annurev-vision-082114-035341
54 W. Shen, J.G. SivakEyes of a lower vertebrate are susceptible to the visual environment Invest Ophthalmol Vis Sci, 48 (10) (2007), pp. 4829-4837, 10.1167/iovs.06-1273
55 L.K. Yeh, C.Y. Liu, W.W.Y. Kao, et al.Knockdown of zebrafish lumican gene (zlum) causes scleral thinning and increased size of scleral coats J Biol Chem, 285 (36) (2010), pp. 28141-28155, 10.1074/jbc.M109.043679
56 K.N. Veth, J.R. Willer, R.F. Collery, et al.Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma PLoS Genet, 7 (2) (2011), Article e1001310, 10.1371/journal.pgen.1001310
57 S. Liu, T. Chen, B. Chen, et al.Lrpap1 deficiency leads to myopia through TGF-β-induced apoptosis in zebrafish Cell Commun Signal, 20 (1) (2022), p. 162, 10.1186/s12964-022-00970-9
58 M.Y. Lin, I.T. Lin, Y.C. Wu, et al.Stepwise candidate drug screening for myopia control by using zebrafish, mouse, and Golden Syrian Hamster myopia models EBioMedicine, 65 (2021), Article 103263, 10.1016/j.ebiom.2021.103263
59 W.H. Quint, K.C.D. Tadema, N. Kokke, et al.Post-GWAS screening of candidate genes for refractive error in mutant zebrafish models Sci Rep, 13 (1) (2023), p. 2017, 10.1038/s41598-023-28944-y
60 H. Ku, J.J. Chen, M. Hu, et al.Myopia development in tree shrew is associated with chronic inflammatory reactions Curr Issues Mol Biol, 44 (9) (2022), pp. 4303-4313, 10.3390/cimb44090296
61 Z. She, A.H. Ward, T.J. GawneThe effects of ambient narrowband long-wavelength light on lens-induced myopia and form-deprivation myopia in tree shrews Exp Eye Res, 234 (2023), Article 109593, 10.1016/j.exer.2023.109593
62 Q. Fu, Y. Zhang, L. Chen, et al.Near work induces myopia in Guinea pigs Exp Eye Res, 224 (2022), Article 109202, 10.1016/j.exer.2022.109202
63 M.H. Howlett, S.A. McFaddenForm-deprivation myopia in the Guinea pig (Cavia porcellus) Vis Res, 46 (1-2) (2006), pp. 267-283, 10.1016/j.visres.2005.06.036
64 N.A. McBrien, H.O. Moghaddam, R. New, et al.Experimental myopia in a diurnal mammal (Sciurus carolinensis) with no accommodative ability J Physiol, 469 (1993), pp. 427-441, 10.1113/jphysiol.1993.sp019821
65 E.L. Smith, G.W. Maguire, J.T. WatsonAxial lengths and refractive errors in kittens reared with an optically induced anisometropia Invest Ophthalmol Vis Sci, 19 (10) (1980), pp. 1250-1255
66 A.A. Kasparson, J. Badridze, V.V. MaximovColour cues proved to be more informative for dogs than brightness Proc Biol Sci, 280 (1766) (2013), Article 20131356, 10.1098/rspb.2013.1356
67 R.W. Slijkerman, F. Song, G.D. Astuti, et al.The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies Prog Retin Eye Res, 48 (2015), pp. 137-159, 10.1016/j.preteyeres.2015.04.004
68 L.A. Williams, M.A. Kubai, C.J. Murphy, et al.Ocular components in three breeds of dogs with high prevalence of myopia Optom Vis Sci, 88 (2) (2011), pp. 269-274, 10.1097/OPX.0b013e3182058ff0
69 M. Ross, R. Ofri, I. Aizenberg, et al.Naturally-occurring myopia and loss of cone function in a sheep model of achromatopsia Sci Rep, 10 (1) (2020), Article 19314, 10.1038/s41598-020-76205-z
70 R.S.Y. Cheng, M.S.M. Wai, G.C.T. Leung, et al.Different types of visual cells in the photoreceptor layer of the retinae of the treeshrew (Tupaia belangeri chinensis) as revealed by scanning microscopy Folia Morphol (2022), 10.5603/FM.a2022.0099
71 B. Müller, L. PeichlTopography of cones and rods in the tree shrew retina J Comp Neurol, 282 (4) (1989), pp. 581-594, 10.1002/cne.902820409
72 G.H. Jacobs, J.F. Deegan 2ndSpectral sensitivity, photopigments, and color vision in the Guinea pig (Cavia porcellus) Behav Neurosci, 108 (5) (1994), pp. 993-1004, 10.1037//0735-7044.108.5.993
73 L. Jiang, F. Schaeffel, X. Zhou, et al.Spontaneous axial myopia and emmetropization in a strain of wild-type Guinea pig (Cavia porcellus) Invest Ophthalmol Vis Sci, 50 (3) (2009), pp. 1013-1019, 10.1167/iovs.08-2463
74 K. Thomson, C. Karouta, R. AshbyForm-deprivation and lens-induced myopia are similarly affected by pharmacological manipulation of the dopaminergic system in chicks Invest Ophthalmol Vis Sci, 61 (12) (2020), p. 4, 10.1167/iovs.61.12.4
75 Z. She, L.F. Hung, B. Arumugam, et al.The development of and recovery from form-deprivation myopia in infant rhesus monkeys reared under reduced ambient lighting Vis Res, 183 (2021), pp. 106-117, 10.1016/j.visres.2021.02.004
76 W. Shen, M. Vijayan, J.G. SivakInducing form-deprivation myopia in fish Invest Ophthalmol Vis Sci, 46 (5) (2005), pp. 1797-1803, 10.1167/iovs.04-1318
77 R.A. Williams, R.G. BootheEffects of defocus on monkey (Macaca-Nemestrina) contrast sensitivity - behavioral measurements and predictions Am J Optom Physiol Opt, 60 (2) (1983), pp. 106-111
78 X.W. Zhong, J. Ge, H.H. Nie, et al.Effects of photorefractive keratectomy-induced defocus on emmetropization of infant rhesus monkeys Invest Ophthalmol Vis Sci, 45 (10) (2004), pp. 3806-3811, 10.1167/iovs.03-0326
79 Y. Xu, L. Lai, Z. Chen, et al.Scleral remolding-related gene expression after scleral collagen cross-linking using ultraviolet A and riboflavin in myopic Guinea pig model Curr Eye Res, 48 (4) (2023), pp. 392-401, 10.1080/02713683.2022.2156549
80 N. Erdinest, N. London, I. Lavy, et al.Peripheral defocus and myopia management: a mini-review Kor J Ophthalmol, 37 (1) (2023), pp. 70-81, 10.3341/kjo.2022.0125
81 E.L. Smith, L.F. Hung, J. Huang, et al.Effects of local myopic defocus on refractive development in monkeys Optom Vis Sci, 90 (11) (2013), pp. 1176-1186
82 N.W. El-Nimri, H. Zhang, C.F. WildsoetThe effect of part-time wear of 2-zone concentric bifocal spectacle lenses on refractive error development & eye growth in young chicks Exp Eye Res, 180 (2019), pp. 184-191, 10.1016/j.exer.2018.12.010
83 H.E. Bowrey, G. Zeng, D.Y. Tse, et al.The effect of spectacle lenses containing peripheral defocus on refractive error and horizontal eye shape in the Guinea pig Invest Ophthalmol Vis Sci, 58 (5) (2017), pp. 2705-2714, 10.1167/iovs.16-20240
84 A.R. Muralidharan, C. Lança, S. Biswas, et al.Light and myopia: from epidemiological studies to neurobiological mechanisms Ther Adv Ophthalmol, 13 (2021), Article 25158414211059246, 10.1177/25158414211059246
85 J. Liu, K. Pendrak, C. Capehart, et al.Emmetropisation under continuous but non-constant light in chicks Exp Eye Res, 79 (5) (2004), pp. 719-728, 10.1016/j.exer.2004.08.007
86 E.G. Landis, H.N. Park, M. Chrenek, et al.Ambient light regulates retinal dopamine signaling and myopia susceptibility Invest Ophthalmol Vis Sci, 62 (1) (2021), p. 28, 10.1167/iovs.62.1.28
87 R. Strickland, E.G. Landis, M.T. PardueShort-wavelength (violet) light protects mice from myopia through cone signaling Invest Ophthalmol Vis Sci, 61 (2) (2020), p. 13, 10.1167/iovs.61.2.13
88 T. Tian, L. Zou, S. Wu, et al.Wavelength defocus and temporal sensitivity affect refractive development in Guinea pigs Invest Ophthalmol Vis Sci, 60 (6) (2019), pp. 2173-2180, 10.1167/iovs.18-25228
89 W.H. Quint, R. van Buuren, N. Kokke, et al.Exposure to cyan or red light inhibits the axial growth of zebrafish eyes Exp Eye Res, 230 (2023), Article 109437, 10.1016/j.exer.2023.109437
90 F. Dutheil, T. Oueslati, L. Delamarre, et al.Myopia and near work: a systematic review and meta-analysis Int J Environ Res Publ Health, 20 (1) (2023), 10.3390/ijerph20010875
91 A.V. Tkatchenko, T.V. Tkatchenko, J.A. Guggenheim, et al.APLP2 regulates refractive error and myopia development in mice and humans PLoS Genet, 11 (8) (2015), Article e1005432, 10.1371/journal.pgen.1005432
92 Z.B. Jin, J. Wu, X.F. Huang, et al.Trio-based exome sequencing arrests de novo mutations in early-onset high myopia Proc Natl Acad Sci U S A, 114 (16) (2017), pp. 4219-4224, 10.1073/pnas.1615970114
93 F. Zhao, J. Wu, A. Xue, et al.Exome sequencing reveals CCDC111 mutation associated with high myopia Hum Genet, 132 (8) (2013), pp. 913-921, 10.1007/s00439-013-1303-6
94 D.M. Hudson, K.S. Joeng, R. Werther, et al.Post-translationally abnormal collagens of prolyl 3-hydroxylase-2 null mice offer a pathobiological mechanism for the high myopia linked to human LEPREL1 mutations J Biol Chem, 290 (13) (2015), pp. 8613-8622, 10.1074/jbc.M114.634915
95 J. Ouyang, W. Sun, X. Xiao, et al.CPSF1 mutations are associated with early-onset high myopia and involved in retinal ganglion cell axon projection Hum Mol Genet, 28 (12) (2019), pp. 1959-1970, 10.1093/hmg/ddz029
96 S. Dong, Q. Tian, T. Zhu, et al.SLC39A5 dysfunction impairs extracellular matrix synthesis in high myopia pathogenesis J Cell Mol Med, 25 (17) (2021), pp. 8432-8441, 10.1111/jcmm.16803
97 F. Napolitano, V. Di Iorio, F. Testa, et al.Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation Clin Genet, 93 (5) (2018), pp. 982-991, 10.1111/cge.13217
98 T.K. Ng, C.Y. Lam, D.S. Lam, et al.AC and AG dinucleotide repeats in the PAX6 P1 promoter are associated with high myopia Mol Vis, 15 (2009), pp. 2239-2248
99 Y. Song, F. Zhang, Y. Zhao, et al.Enlargement of the axial length and altered ultrastructural features of the sclera in a mutant lumican transgenic mouse model PLoS One, 11 (10) (2016), Article e0163165, 10.1371/journal.pone.0163165
100 F. Zhao, Q. Li, W. Chen, et al.Dysfunction of VIPR2 leads to myopia in humans and mice J Med Genet, 59 (1) (2022), pp. 88-100, 10.1136/jmedgenet-2020-107220
101 K.I. Szczerkowska, S. Petrezselyova, J. Lindovsky, et al.Myopia disease mouse models: a missense point mutation (S673G) and a protein-truncating mutation of the Zfp644 mimic human disease phenotype Cell Biosci, 9 (2019), p. 21, 10.1186/s13578-019-0280-4
102 C. Zeitz, J.E. Roger, I. Audo, et al.Shedding light on myopia by studying complete congenital stationary night blindness Prog Retin Eye Res, 93 (2023), Article 101155, 10.1016/j.preteyeres.2022.101155
103 M. Neitz, J. NeitzIntermixing the OPN1LW and OPN1MW genes disrupts the exonic splicing code causing an array of vision disorders Genes, 12 (8) (2021), 10.3390/genes12081180
104 R. van Mazijk, A.E.G. Haarman, L.H. Hoefsloot, et al.Early onset X-linked female limited high myopia in three multigenerational families caused by novel mutations in the ARR3 gene Hum Mutat, 43 (3) (2022), pp. 380-388, 10.1002/humu.24327
105 H. Park, S.B. Jabbar, C.C. Tan, et al.Visually-driven ocular growth in mice requires functional rod photoreceptors Invest Ophthalmol Vis Sci, 55 (10) (2014), pp. 6272-6279, 10.1167/iovs.14-14648
106 R. Chakraborty, V. Yang, H.N. Park, et al.Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice Exp Eye Res, 180 (2019), pp. 226-230, 10.1016/j.exer.2018.12.021
107 Q. Tian, P. Tong, G. Chen, et al.GLRA2 gene mutations cause high myopia in humans and mice J Med Genet, 60 (2) (2023), pp. 193-203, 10.1136/jmedgenet-2022-108425
108 F. Zhao, H. Wu, P.S. Reinach, et al.Up-regulation of matrix metalloproteinase-2 by scleral monocyte-derived macrophages contributes to myopia development Am J Pathol, 190 (9) (2020), pp. 1888-1908, 10.1016/j.ajpath.2020.06.002
109 X. Zhou, Q. Huang, J. An, et al.Genetic deletion of the adenosine A2A receptor confers postnatal development of relative myopia in mice Invest Ophthalmol Vis Sci, 51 (9) (2010), pp. 4362-4370, 10.1167/iovs.09-3998
110 M.A. Aldahmesh, A.O. Khan, H. Alkuraya, et al.Mutations in LRPAP1 are associated with severe myopia in humans Am J Hum Genet, 93 (2) (2013), pp. 313-320, 10.1016/j.ajhg.2013.06.002
111 Y. Ma, Q. Lin, Q. Zhao, et al.Prevalence and characteristics of myopia in adult rhesus macaques in southwest China Transl Vis Sci Technol, 12 (3) (2023), p. 21, 10.1167/tvst.12.3.21
112 R.K. Ablordeppey, C.R. Lin, B. Song, et al.Choroidal morphology and photoreceptor activity are related and affected by myopia development Invest Ophthalmol Vis Sci, 65 (2) (2024), p. 3, 10.1167/iovs.65.2.3
113 R.F. Spaide, J.G. Fujimoto, N.K. Waheed, et al.Optical coherence tomography angiography Prog Retin Eye Res, 64 (2018), pp. 1-55, 10.1016/j.preteyeres.2017.11.003
114 X. Wei, P.K. Balne, K.E. Meissner, et al.Assessment of flow dynamics in retinal and choroidal microcirculation Surv Ophthalmol, 63 (5) (2018), pp. 646-664, 10.1016/j.survophthal.2018.03.003
115 O. Rinner, J.M. Rick, S.C. NeuhaussContrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response Invest Ophthalmol Vis Sci, 46 (1) (2005), pp. 137-142, 10.1167/iovs.04-0682
116 X. Zhou, M.T. Pardue, P.M. Iuvone, et al.Dopamine signaling and myopia development: what are the key challenges Prog Retin Eye Res, 61 (2017), pp. 60-71, 10.1016/j.preteyeres.2017.06.003
117 T. Tian, L. Zou, S. Wang, et al.The role of dopamine in emmetropization modulated by wavelength and temporal frequency in Guinea pigs Invest Ophthalmol Vis Sci, 62 (12) (2021), p. 20, 10.1167/iovs.62.12.20
118 P. Wei, G. Han, Y. WangEffects of dopamine D2 receptor antagonists on retinal pigment epithelial/choroid complex metabolism in form-deprived myopic Guinea pigs Proteomics, 23 (18) (2023), Article e2200325, 10.1002/pmic.202200325
119 Z. Shu, K. Chen, Q. Wang, et al.The role of retinal dopamine D1 receptors in ocular growth and myopia development in mice J Neurosci, 43 (48) (2023), pp. 8231-8242, 10.1523/jneurosci.1196-23.2023
120 K. Pesudovs, D.B. ElliottRefractive error changes in cortical, nuclear, and posterior subcapsular cataracts Br J Ophthalmol, 87 (8) (2003), pp. 964-967, 10.1136/bjo.87.8.964
121 G.W. van AlphenChoroidal stress and emmetropization Vis Res, 26 (5) (1986), pp. 723-734, 10.1016/0042-6989(86)90086-6
122 D.G. CampbellPigmentary dispersion and glaucoma. A new theory Arch Ophthalmol, 97 (9) (1979), pp. 1667-1672, 10.1001/archopht.1979.01020020235011
123 N.A. McBrien, L.M. Cornell, A. GentleStructural and ultrastructural changes to the sclera in a mammalian model of high myopia Invest Ophthalmol Vis Sci, 42 (10) (2001), pp. 2179-2187
124 A. Gentle, Y. Liu, J.E. Martin, et al.Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia J Biol Chem, 278 (19) (2003), pp. 16587-16594, 10.1074/jbc.M300970200
125 C.L. Liang, K.S. Hung, Y.Y. Tsai, et al.Systematic assessment of the tagging polymorphisms of the COL1A1 gene for high myopia J Hum Genet, 52 (4) (2007), pp. 374-377, 10.1007/s10038-007-0117-6
126 A. Jacobson, C.G. Besirli, B.L. BohnsackCharacteristics of a three-generation family with stickler syndrome type I carrying two different COL2A1 mutations Genes, 14 (4) (2023), 10.3390/genes14040847
127 N. Levinger, K. Hendler, E. Banin, et al.Variable phenotype of Knobloch syndrome due to biallelic COL18A1 mutations in children Eur J Ophthalmol, 31 (6) (2021), pp. 3349-3354, 10.1177/1120672120977343
128 J. Massagué, D. SheppardTGF-β signaling in health and disease Cell, 186 (19) (2023), pp. 4007-4037, 10.1016/j.cell.2023.07.036
129 X. Zhu, Y. Du, D. Li, et al.Aberrant TGF-β1 signaling activation by MAF underlies pathological lens growth in high myopia Nat Commun, 12 (1) (2021), p. 2102, 10.1038/s41467-021-22041-2
130 H. Ku, J.J. Chen, W. Chen, et al.The role of transforming growth factor beta in myopia development Mol Immunol, 167 (2024), pp. 34-42, 10.1016/j.molimm.2024.01.011
131 E.H. Kerkvliet, I.C. Jansen, T. Schoenmaker, et al.Collagen type I, III and V differently modulate synthesis and activation of matrix metalloproteinases by cultured rabbit periosteal fibroblasts Matrix Biol, 22 (3) (2003), pp. 217-227, 10.1016/s0945-053x(03)00035-0
132 R. Wojciechowski, S.S. Yee, C.L. Simpson, et al.Matrix metalloproteinases and educational attainment in refractive error: evidence of gene-environment interactions in the Age-Related Eye Disease Study Ophthalmology, 120 (2) (2013), pp. 298-305, 10.1016/j.ophtha.2012.07.078
133 H.H. Liu, M.S. Kenning, A.I. Jobling, et al.Reduced scleral TIMP-2 expression is associated with myopia development: TIMP-2 supplementation stabilizes scleral biomarkers of myopia and limits myopia development Invest Ophthalmol Vis Sci, 58 (4) (2017), pp. 1971-1981, 10.1167/iovs.16-21181
134 D.M. Brown, R. Mazade, D. Clarkson-Townsend, et al.Candidate pathways for retina to scleral signaling in refractive eye growth Exp Eye Res, 219 (2022), Article 109071, 10.1016/j.exer.2022.109071
135 H. Liu, F. Schaeffel, Z. Yang, et al.GABA(B) receptor activation affects eye growth in chickens with visually induced refractive errors Biomolecules, 13 (3) (2023), 10.3390/biom13030434
136 B.J. Carr, W.K. StellNitric oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks Sci Rep, 6 (1) (2016), p. 9, 10.1038/s41598-016-0002-7
137 Y. Tao, M. Pan, S. Liu, et al.cAMP level modulates scleral collagen remodeling, a critical step in the development of myopia PLoS One, 8 (8) (2013), Article e71441, 10.1371/journal.pone.0071441
138 Y. Qin, T. Liu, Z. Zhang, et al.Scleral remodeling in early adulthood: the role of FGF-2 Sci Rep, 13 (1) (2023), Article 20779, 10.1038/s41598-023-48264-5
139 Y.X. Liu, Y. SunMMP-2 participates in the sclera of Guinea pig with form-deprivation myopia via IGF-1/STAT3 pathway Eur Rev Med Pharmacol Sci, 22 (9) (2018), pp. 2541-2548, 10.26355/eurrev_201805_14945
140 H. Li, D. Cui, F. Zhao, et al.BMP-2 is involved in scleral remodeling in myopia development PLoS One, 10 (5) (2015), Article e0125219, 10.1371/journal.pone.0125219
141 C.G. Wong, M. Taban, K. Osann, et al.Subchoroidal release of VEGF and bFGF produces choroidal neovascularization in rabbit Curr Eye Res, 42 (2) (2017), pp. 237-243, 10.1080/02713683.2016.1227448
142 D.M. Brown, J. Yu, P. Kumar, et al.Exogenous all-trans retinoic acid induces myopia and alters scleral biomechanics in mice Invest Ophthalmol Vis Sci, 64 (5) (2023), p. 22, 10.1167/iovs.64.5.22
143 S. Hu, S. Ouyang, H. Liu, et al.The effect of Wnt/β-catenin pathway on the scleral remolding in the mouse during form deprivation Int Ophthalmol, 41 (9) (2021), pp. 3099-3107, 10.1007/s10792-021-01875-1
144 W. Wu, Y. Su, C. Hu, et al.Hypoxia-induced scleral HIF-2α upregulation contributes to rises in MMP-2 expression and myopia development in mice Invest Ophthalmol Vis Sci, 63 (8) (2022), p. 2, 10.1167/iovs.63.8.2
145 Y. Ren, X. Yang, Z. Luo, et al.HIF-1α aggravates pathologic myopia through the miR-150-5p/LAMA4/p38 MAPK signaling axis Mol Cell Biochem, 477 (4) (2022), pp. 1065-1074, 10.1007/s11010-021-04305-z
146 Q. Wei, T. Zhang, J. Fan, et al.Pathological myopia-induced antioxidative proteins in the vitreous humor Ann Transl Med, 8 (5) (2020), p. 193, 10.21037/atm.2020.01.63
147 L. Kang, S.I. Ikeda, Y. Yang, et al.Establishment of a novel ER-stress induced myopia model in mice Eye Vis (Lond), 10 (1) (2023), p. 44, 10.1186/s40662-023-00361-2
148 C. Zhu, Q. Chen, Y. Yuan, et al.Endoplasmic reticulum stress regulates scleral remodeling in a Guinea pig model of form-deprivation myopia J Ophthalmol (2020. 2020), Article 3264525, 10.1155/2020/3264525
149 S.I. Ikeda, T. Kurihara, X. Jiang, et al.Scleral PERK and ATF6 as targets of myopic axial elongation of mouse eyes Nat Commun, 13 (1) (2022), p. 5859, 10.1038/s41467-022-33605-1
150 X. Lin, Y. Lei, M. Pan, et al.Augmentation of scleral glycolysis promotes myopia through histone lactylation Cell Metabol, 36 (3) (2024), pp. 511-525.e7, 10.1016/j.cmet.2023.12.023
151 M. Pan, F. Zhao, B. Xie, et al.Dietary ω-3 polyunsaturated fatty acids are protective for myopia Proc Natl Acad Sci U S A, 118 (43) (2021), 10.1073/pnas.2104689118
152 L. Zhang, X. Yu, N. Hong, et al.CircRNA expression profiles and regulatory networks in the vitreous humor of people with high myopia Exp Eye Res, 241 (2024), Article 109827, 10.1016/j.exer.2024.109827
153 Z. Cui, Y. Huang, X. Chen, et al.Identification of miR-671-5p and its related pathways as general mechanisms of both form-deprivation and lens-induced myopia in mice Curr Issues Mol Biol, 45 (3) (2023), pp. 2060-2072, 10.3390/cimb45030132
154 B. Jiang, N. Hong, L. Zhang, et al.MiR-181a-5p may regulate cell proliferation and autophagy in myopia and the associated retinopathy Exp Eye Res, 241 (2024), Article 109829, 10.1016/j.exer.2024.109829
155 C.L. Liang, K.C. Chen, E. Hsi, et al.miR-328-3p affects axial length via multiple routes and anti-miR-328-3p possesses a potential to control myopia progression Invest Ophthalmol Vis Sci, 63 (12) (2022), p. 11, 10.1167/iovs.63.12.11
156 T. Li, X. Li, Y. Hao, et al.Inhibitory effect of miR-138-5p on choroidal fibrosis in lens-induced myopia Guinea pigs via suppressing the HIF-1α signaling pathway Biochem Pharmacol, 211 (2023), Article 115517, 10.1016/j.bcp.2023.115517
157 Q. Li, Q. Zheng, J. He, et al.Hsa-miR-142-3p reduces collagen I in human scleral fibroblasts by targeting TGF-β1 in high myopia Exp Eye Res, 219 (2022), Article 109023, 10.1016/j.exer.2022.109023
158 D.L. Nickla, J. WallmanThe multifunctional choroid Prog Retin Eye Res, 29 (2) (2010), pp. 144-168, 10.1016/j.preteyeres.2009.12.002
159 H.J. Burfield, N.B. Patel, L.A. OstrinOcular biometric diurnal rhythms in emmetropic and myopic adults Invest Ophthalmol Vis Sci, 59 (12) (2018), pp. 5176-5187, 10.1167/iovs.18-25389
160 T. Yu, X. Xie, H. Wei, et al.Choroidal changes in lens-induced myopia in Guinea pigs Microvasc Res, 138 (2021), Article 104213, 10.1016/j.mvr.2021.104213
161 Y. Huang, X. Li, J. Wu, et al.Effect of spectacle lenses with aspherical lenslets on choroidal thickness in myopic children: a 2-year randomised clinical trial Br J Ophthalmol, 107 (12) (2023), pp. 1806-1811, 10.1136/bjo-2022-321815
162 R.K.-m. Chun, Z. Liu, W.C. Tang, et al.Effect of defocus incorporated multiple segments (DIMS) lenses on choroidal thickness in schoolchildren Invest Ophthalmol Vis Sci, 62 (8) (2021) 1389-1389
163 X. Zhou, S. Zhang, G. Zhang, et al.Increased choroidal blood perfusion can inhibit form deprivation myopia in Guinea pigs Invest Ophthalmol Vis Sci, 61 (13) (2020), p. 25, 10.1167/iovs.61.13.25
164 X. Zhou, S. Zhang, F. Yang, et al.Decreased choroidal blood perfusion induces myopia in Guinea pigs Invest Ophthalmol Vis Sci, 62 (15) (2021), p. 30, 10.1167/iovs.62.15.30
165 S. Zhang, G. Zhang, X. Zhou, et al.Changes in choroidal thickness and choroidal blood perfusion in Guinea pig myopia Invest Ophthalmol Vis Sci, 60 (8) (2019), pp. 3074-3083, 10.1167/iovs.18-26397
166 X. Jiang, M.T. Pardue, K. Mori, et al.Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice Proc Natl Acad Sci U S A, 118 (22) (2021), 10.1073/pnas.2018840118
167 C. Carpena-Torres, T. Schilling, F. Huete-Toral, et al.Increased ocular dopamine levels in rabbits after blue light stimulation of the optic nerve head Exp Eye Res, 234 (2023), Article 109604, 10.1016/j.exer.2023.109604
168 P. Zhang, H. ZhuLight signaling and myopia development: a review Ophthalmol Ther, 11 (3) (2022), pp. 939-957, 10.1007/s40123-022-00490-2
169 J.S. Wolffsohn, P.S. Kollbaum, D.A. Berntsen, et al.Imi - clinical myopia control trials and instrumentation report Invest Ophthalmol Vis Sci, 60 (3) (2019), pp. M132-m160, 10.1167/iovs.18-25955
170 Q. Zhu, X. Cao, Y. Zhang, et al.Repeated low-level red-light therapy for controlling onset and progression of myopia-a review Int J Med Sci, 20 (10) (2023), pp. 1363-1376, 10.7150/ijms.85746
171 H. Sanchez Tocino, C. Diez Montero, A. Villanueva Gómez, et al.Phenotypic high myopia in X-linked retinitis pigmentosa secondary to a novel mutation in the RPGR gene Ophthalmic Genet, 40 (2) (2019), pp. 170-176, 10.1080/13816810.2019.1605385
172 F. Zhao, H. Zhou, W. Chen, et al.Declines in PDE4B activity promote myopia progression through downregulation of scleral collagen expression Exp Eye Res, 212 (2021), Article 108758, 10.1016/j.exer.2021.108758
173 G. Manes, P. Cheguru, A. Majumder, et al.A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit PLoS One, 9 (4) (2014), Article e95768, 10.1371/journal.pone.0095768
174 R. Schippert, E. Burkhardt, M. Feldkaemper, et al.Relative axial myopia in Egr-1 (ZENK) knockout mice Invest Ophthalmol Vis Sci, 48 (1) (2007), pp. 11-17, 10.1167/iovs.06-0851
175 E. Orhan, M. Neuillé, M. de Sousa Dias, et al.A new mouse model for complete congenital stationary night blindness due to Gpr179 deficiency Int J Mol Sci, 22 (9) (2021), 10.3390/ijms22094424
176 R.G. Gregg, S. Mukhopadhyay, S.I. Candille, et al.Identification of the gene and the mutation responsible for the mouse nob phenotype Invest Ophthalmol Vis Sci, 44 (1) (2003), pp. 378-384, 10.1167/iovs.02-0501
177 M.B. Hölzel, W. Kamermans, B.H.J. Winkelman, et al.A common cause for nystagmus in different congenital stationary night blindness mouse models J Physiol, 601 (23) (2023), pp. 5317-5340, 10.1113/jp284965
178 A.J. Fischer, I.G. Morgan, W.K. StellColchicine causes excessive ocular growth and myopia in chicks Vis Res, 39 (4) (1999), pp. 685-697, 10.1016/s0042-6989(98)00178-3
179 D.M. Berson, F.A. Dunn, M. TakaoPhototransduction by retinal ganglion cells that set the circadian clock Science, 295 (5557) (2002), pp. 1070-1073, 10.1126/science.1067262
180 S. Hattar, H.W. Liao, M. Takao, et al.Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity Science, 295 (5557) (2002), pp. 1065-1070, 10.1126/science.1069609
181 A.L. Liu, Y.F. Liu, G. Wang, et al.The role of ipRGCs in ocular growth and myopia development Sci Adv, 8 (23) (2022), Article eabm9027, 10.1126/sciadv.abm9027
182 L. Li, Y. Yu, Z. Zhuang, et al.Circadian rhythm, ipRGCs, and dopamine signalling in myopia Graefes Arch Clin Exp Ophthalmol, 262 (3) (2024), pp. 983-990, 10.1007/s00417-023-06276-x
183 X. Zhang, X. Yu, Y. Wen, et al.Functions of retinal astrocytes and Müller cells in mammalian myopia BMC Ophthalmol, 22 (1) (2022), p. 451, 10.1186/s12886-022-02643-0
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution