1. Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University School of Medicine,Hangzhou,China
2. Zhejiang Provincial Key Lab of Ophthalmology,Hangzhou,China
3. MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University,Hangzhou,China
4. Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine,Hangzhou,China
扫 描 看 全 文
Development and material characteristics of glaucoma surgical implants. [J]. AOPR 3(4):171-179(2023)
Development and material characteristics of glaucoma surgical implants. [J]. AOPR 3(4):171-179(2023) DOI: 10.1016/j.aopr.2023.09.001.
Background,Glaucoma is the leading cause of irreversible blindness worldwide. The reduction of intraocular pressure has proved to be the only factor which can be modified in the treatment, and surgical management is one of the important methods for the treatment of glaucoma patients.,Main text,In order to increase aqueous humor outflow and further reduce intraocular pressure, various drainage implants have been designed and applied in clinical practice. From initial Molteno, Baerveldt and Ahmed glaucoma implants to the Ahmed ClearPath device, Paul glaucoma implant, EX-PRESS and the eyeWatch implant, to iStent, Hydrus, XEN, PreserFlo, Cypass, SOLX Gold Shunt, etc., glaucoma surgical implants are currently undergoing a massive transformation on their structures and performances. Multitudinous materials have been used to produce these implants, from original silicone and porous polyethylene, to gelatin, stainless steel, SIBS, titanium, nitinol and even 24-carat gold. Moreover, the material geometry, size, rigidity, biocompatibility and mechanism (valved versus nonvalved) among these implants are markedly different. In this review, we discussed the development and material characteristics of both conventional glaucoma drainage devices and more recent implants, such as the eyeWatch and the new minimally invasive glaucoma surgery (MIGS) devices.,Conclusions,Although different in design and materials, these delicate glaucoma surgical implants have widely expanded the glaucoma surgical methods, and improved the success rate and safety of glaucoma surgery significantly. However, all of these glaucoma surgical implants have various limitations and should be used for different glaucoma patients at different conditions.
Background,Glaucoma is the leading cause of irreversible blindness worldwide. The reduction of intraocular pressure has proved to be the only factor which can be modified in the treatment, and surgical management is one of the important methods for the treatment of glaucoma patients.,Main text,In order to increase aqueous humor outflow and further reduce intraocular pressure, various drainage implants have been designed and applied in clinical practice. From initial Molteno, Baerveldt and Ahmed glaucoma implants to the Ahmed ClearPath device, Paul glaucoma implant, EX-PRESS and the eyeWatch implant, to iStent, Hydrus, XEN, PreserFlo, Cypass, SOLX Gold Shunt, etc., glaucoma surgical implants are currently undergoing a massive transformation on their structures and performances. Multitudinous materials have been used to produce these implants, from original silicone and porous polyethylene, to gelatin, stainless steel, SIBS, titanium, nitinol and even 24-carat gold. Moreover, the material geometry, size, rigidity, biocompatibility and mechanism (valved versus nonvalved) among these implants are markedly different. In this review, we discussed the development and material characteristics of both conventional glaucoma drainage devices and more recent implants, such as the eyeWatch and the new minimally invasive glaucoma surgery (MIGS) devices.,Conclusions,Although different in design and materials, these delicate glaucoma surgical implants have widely expanded the glaucoma surgical methods, and improved the success rate and safety of glaucoma surgery significantly. However, all of these glaucoma surgical implants have various limitations and should be used for different glaucoma patients at different conditions.
Glaucoma drainage devicesMinimally invasive glaucoma surgeryMaterial characteristics
Glaucoma drainage devicesMinimally invasive glaucoma surgeryMaterial characteristics
1 X Wu, K Konieczka, X Liu, et al.Role of ocular blood flow in normal tension glaucoma Adv Ophthalmol Pract Res, 2 (1) (2022), p. 100036 https://doi.org/10.1016/j.aopr.2022.100036
2 Y.C. Tham, X. Li, T.Y. Wong, et al.Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis Ophthalmology, 121 (11) (2014), pp. 2081-2090, 10.1016/j.ophtha.2014.05.013
3 S. Vernazza, F. Oddone, S. Tirendi, et al.Risk factors for retinal ganglion cell distress in glaucoma and neuroprotective potential intervention Int J Mol Sci, 22 (15) (2021), 10.3390/ijms22157994
4 S. B, A. Ö, Y.G. A, et al.Retinal tissue bioengineering, materials and methods for the treatment of glaucoma Tissue engineering and regenerative medicine, 17 (3) (2020), pp. 253-269, 10.1007/s13770-020-00254-8
5 L. Rmh, Y. B, I. E, et al.Translating minimally invasive glaucoma surgery devices Clinical and translational science, 13 (1) (2020), pp. 14-25, 10.1111/cts.12660
6 R. LThe surgical management of glaucoma: a review Clin Exp Ophthalmol, 50 (2) (2022), pp. 213-231, 10.1111/ceo.14028
7 G. Schlunck, T. Meyer-ter-Vehn, T. Klink, et al.Conjunctival fibrosis following filtering glaucoma surgery Exp Eye Res, 142 (2016), pp. 76-82, 10.1016/j.exer.2015.03.021
8 K.J. Koike, P.T. ChangTrabeculectomy: a brief history and review of current trends Int Ophthalmol Clin, 58 (3) (2018), pp. 117-133, 10.1097/iio.0000000000000231
9 R. Thomas, S.C. Gieser, F. BillsonMolteno implant surgery for advanced glaucoma Aust N Z J Ophthalmol, 23 (1) (1995), pp. 9-15, 10.1111/j.1442-9071.1995.tb01639.x
10 S. Melamed, P.M. FioreMolteno implant surgery in refractory glaucoma Surv Ophthalmol, 34 (6) (1990), pp. 441-448, 10.1016/0039-6257(90)90124-e
11 A.C. MoltenoThe optimal design of drainage implants for glaucoma Trans Ophthalmol Soc N Z, 33 (1981), pp. 39-41
12 S. Patel, L.R. PasqualeGlaucoma drainage devices: a review of the past, present, and future Semin Ophthalmol, 25 (5-6) (2010), pp. 265-270, 10.3109/08820538.2010.518840
13 D.K. Heuer, M.A. Lloyd, D.A. Abrams, et al.Which is better? One or two? A randomized clinical trial of single-plate versus double-plate Molteno implantation for glaucomas in aphakia and pseudophakia Ophthalmology, 99 (10) (1992), pp. 1512-1519, 10.1016/s0161-6420(92)31772-5
14 J.J. CModifications of textile materials with functional silanes, liquid silicone softeners, and silicone rubbers-A review Polymers, 14 (20) (2022), 10.3390/polym14204382
15 W. B, M.F. D C, et al.Intraocular silicone implant to treat chronic ocular hypotony-preliminary feasibility data Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie., 254 (11) (2016), pp. 2131-2139, 10.1007/s00417-016-3364-4
16 L.V. Allen Jr.Compounding with silicones Int J Pharm Compd, 19 (3) (2015), pp. 223-230
17 C. HmPolypropylene Ophthalmology, 88 (9) (1981), pp. 959-964, 10.1016/s0161-6420(81)80012-7
18 M.R. Razeghinejad, G.L. SpaethA history of the surgical management of glaucoma Optom Vis Sci, 88 (1) (2011), pp. E39-E47, 10.1097/OPX.0b013e3181fe2226
19 J.O. Välimäki, A.P. YlilehtoMolteno3 implantation as primary glaucoma surgery J Ophthalmol, 2014 (2014), Article 167564, 10.1155/2014/167564
20 T. Vl, C. AL, C. My, et al.Aqueous shunts for glaucoma Cochrane Database Syst Rev, 7 (2017), 10.1002/14651858.CD004918.pub3 CD004918
21 P.A. P BGlaucoma drainage implants Int J Ophthalmol, 13 (8) (2020), pp. 1318-1328, 10.18240/ijo.2020.08.20
22 T.L. RittenbachProptosis from a Baerveldt tube shunt implant Optom Vis Sci, 91 (6) (2014), pp. e145-e148, 10.1097/opx.0000000000000278
23 M.F. Smith, J.W. Doyle, M.B. SherwoodComparison of the Baerveldt glaucoma implant with the double-plate Molteno drainage implant Arch Ophthalmol, 113 (4) (1995), pp. 444-447, 10.1001/archopht.1995.01100040060027
24 I. Riva, G. Roberti, A. Katsanos, et al.A review of the ahmed glaucoma valve implant and comparison with other surgical operations Adv Ther, 34 (4) (2017), pp. 834-847, 10.1007/s12325-017-0503-1
25 J.T. Jacob, C.F. Burgoyne, S.J. McKinnon, et al.Biocompatibility response to modified Baerveldt glaucoma drains J Biomed Mater Res, 43 (2) (1998), pp. 99-107, 10.1002/(sici)1097-4636(199822)43:2<99::aid-jbm3>3.0.co;2-g
26 A. Berghaus, K. Stelter, A. Naumann, et al.Ear reconstruction with porous polyethylene implants Adv Oto-Rhino-Laryngol, 68 (2010), pp. 53-64, 10.1159/000314562
27 I. Riva, G. Roberti, F. Oddone, et al.Ahmed glaucoma valve implant: surgical technique and complications Clin Ophthalmol, 11 (2017), pp. 357-367, 10.2147/opth.S104220
28 D.S. Grover, M.Y. Kahook, L.K. Seibold, et al.Clinical outcomes of ahmed ClearPath implantation in glaucomatous eyes: a novel valveless glaucoma drainage device J Glaucoma, 31 (5) (2022), pp. 335-339, 10.1097/ijg.0000000000002013
29 M. K, S. MsNew glaucoma drainage implants available to glaucoma surgeons Curr Opin Ophthalmol, 34 (2) (2023), pp. 176-180, 10.1097/icu.0000000000000936
30 S. Dorairaj, L.A. Checo, I.V. Wagner, et al.24-Month outcomes of ahmed ClearPath(®) glaucoma drainage device for refractory glaucoma Clin Ophthalmol, 16 (2022), pp. 2255-2262, 10.2147/opth.S368634
31 D.L. Budenz, K. Barton, S.J. Gedde, et al.Five-year treatment outcomes in the Ahmed Baerveldt comparison study Ophthalmology, 122 (2) (2015), pp. 308-316, 10.1016/j.ophtha.2014.08.043
32 N.A. Vallabh, R. Mohindra, E. Drysdale, et al.The Paul® glaucoma implant: 1-year results of a novel glaucoma drainage device in a paediatric cohort Graefes Arch Clin Exp Ophthalmol, 261 (8) (2023), pp. 2351-2358, 10.1007/s00417-023-06000-9
33 K. M[Comparison of glaucoma drainage implants] Die Ophthalmologie, 120 (4) (2023), pp. 372-377, 10.1007/s00347-023-01846-0
34 M.C.J. Tan, H.Y.C. Choy, Teck Koh, V. Chang, et al.Two-year outcomes of the Paul glaucoma implant for treatment of glaucoma J Glaucoma, 31 (6) (2022), pp. 449-455, 10.1097/ijg.0000000000001998
35 K.S. LimControl and optimisation of fluid flow in glaucoma drainage device surgery Eye, 32 (2) (2018), pp. 230-234, 10.1038/eye.2017.316
36 A. Villamarin, S. Roy, S. Bigler, et al.A new adjustable glaucoma drainage device Investigative Ophthalmology & Visual Science, 55 (3) (2014), pp. 1848-1852, 10.1167/iovs.13-12626
37 S. Roy, A. Villamarin, N. Stergiopulos, et al.MRI after successful eyeWatch(TM) implantation Eur J Ophthalmol, 32 (1) (2022), pp. Np79-np82, 10.1177/1120672120973617
38 S. Roy, A. Villamarin, C. Stergiopulos, et al.Initial clinical results of the eyeWatch: a new adjustable glaucoma drainage device used in refractory glaucoma surgery J Glaucoma, 28 (5) (2019), pp. 452-458, 10.1097/ijg.0000000000001209
39 H. Saheb, Ahmed IIMicro-invasive glaucoma surgery: current perspectives and future directions Curr Opin Ophthalmol, 23 (2) (2012), pp. 96-104, 10.1097/ICU.0b013e32834ff1e7
40 A. Motallebzadeh, N.S. Peighambardoust, S. Sheikh, et al.Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications Intermetallics, 113 (2019), Article 106572, 10.1016/j.intermet.2019.106572
41 M. Saini, Y. Singh, P. Arora, et al.Implant biomaterials: a comprehensive review World J Clin Cases, 3 (1) (2015), pp. 52-57, 10.12998/wjcc.v3.i1.52
42 S. Ali, M. Irfan, U.M. Niazi, et al.Microstructure and mechanical properties of modified 316L stainless steel alloy for biomedical applications using powder metallurgy Materials, 15 (8) (2022), 10.3390/ma15082822
43 A. Nyska, Y. Glovinsky, M. Belkin, et al.Biocompatibility of the Ex-PRESS miniature glaucoma drainage implant J Glaucoma, 12 (3) (2003), pp. 275-280, 10.1097/00061198-200306000-00017
44 J.M. Rouse, S.R. Sarkisian Jr.Mini-drainage devices: the ex-PRESS mini-glaucoma device Dev Ophthalmol, 50 (2012), pp. 90-95, 10.1159/000334780
45 J.E. Chan, P.A. NetlandEX-PRESS Glaucoma Filtration Device: efficacy, safety, and predictability Med Devices (Auckl), 8 (2015), pp. 381-388, 10.2147/mder.S63350
46 J.M. Gonzalez-Rodriguez, G.E. Trope, L. Drori-Wagschal, et al.Comparison of trabeculectomy versus Ex-PRESS: 3-year follow-up Br J Ophthalmol, 100 (9) (2016), pp. 1269-1273, 10.1136/bjophthalmol-2015-307161
47 L. PinchukThe development of a SIBS shunt to treat glaucoma J Ocul Pharmacol Therapeut (2023), 10.1089/jop.2023.0005
48 A.C. Acosta, V. Fernandez, P.D. Lamar, et al.Ocular biocompatibility of QuatromerTM (polystyrene–polyisobutylene triblock polymers) for glaucoma implants Investigative Ophthalmology & Visual Science, 45 (13) (2004) 2929-2929
49 M. Jamke, R. Herber, M.A. Haase, et al.PRESERFLO ™ MicroShunt versus trabeculectomy: 1-year results on efficacy and safety Graefes Arch Clin Exp Ophthalmol (2023), pp. 1-15, 10.1007/s00417-023-06075-4
50 F.M. Wagner, A.K. Schuster, A. Munder, et al.Comparison of subconjunctival microinvasive glaucoma surgery and trabeculectomy Acta Ophthalmol, 100 (5) (2022), pp. e1120-e1126, 10.1111/aos.15042
51 G. Gambini, M.M. Carlà, F. Giannuzzi, et al.PreserFlo(®) MicroShunt: an overview of this minimally invasive device for open-angle glaucoma Vision, 6 (1) (2022), 10.3390/vision6010012
52 X.Z. Chen, Z.Q. Liang, K.Y. Yang, et al.The outcomes of XEN gel stent implantation: a systematic review and meta-analysis Front Med, 9 (2022), Article 804847, 10.3389/fmed.2022.804847
53 M.C. Echave, L. Saenz del Burgo, J.L. Pedraz, et al.Gelatin as biomaterial for tissue engineering Curr Pharmaceut Des, 23 (24) (2017), pp. 3567-3584, 10.2174/0929867324666170511123101
54 L. RaAb interno approach to the subconjunctival space using a collagen glaucoma stent J Cataract Refract Surg, 40 (8) (2014), pp. 1301-1306, 10.1016/j.jcrs.2014.01.032
55 A. De Gregorio, M. Montali, G. Stevan, et al.Theoretic scientific rationale of double XEN 45 Gel Stent implant in severe glaucomatous ocular hypertension Int Ophthalmol, 43 (5) (2023), pp. 1629-1638, 10.1007/s10792-022-02561-6
56 K. Mansouri, G.E. Bravetti, K. Gillmann, et al.Two-year outcomes of XEN gel stent surgery in patients with open-angle glaucoma Ophthalmol Glaucoma, 2 (5) (2019), pp. 309-318, 10.1016/j.ogla.2019.03.011
57 K. Le, H. SahebiStent trabecular micro-bypass stent for open-angle glaucoma Clin Ophthalmol, 8 (2014), pp. 1937-1945, 10.2147/opth.S45920
58 D. LosicAdvancing of titanium medical implants by surface engineering: recent progress and challenges Expet Opin Drug Deliv, 18 (10) (2021), pp. 1355-1378, 10.1080/17425247.2021.1928071
59 Y. Xia, Z.C. Feng, C. Li, et al.Application of additive manufacturing in customized titanium mandibular implants for patients with oral tumors Oncol Lett, 20 (4) (2020), p. 51, 10.3892/ol.2020.11912
60 B.A. Francis, J. WinarkoAb interno Schlemm's canal surgery: trabectome and i-stent Dev Ophthalmol, 50 (2012), pp. 125-136, 10.1159/000334794
61 B.A. Francis, K. Singh, S.C. Lin, et al.Novel glaucoma procedures: a report by the American Academy of Ophthalmology Ophthalmology, 118 (7) (2011), pp. 1466-1480, 10.1016/j.ophtha.2011.03.028
62 D.Z. Chen, C.C.A. SngSafety and efficacy of microinvasive glaucoma surgery J Ophthalmol, 2017 (2017), Article 3182935, 10.1155/2017/3182935
63 W.S. Shalaby, S.S. Lam, A. Arbabi, et al.iStent versus iStent inject implantation combined with phacoemulsification in open angle glaucoma Indian J Ophthalmol, 69 (9) (2021), pp. 2488-2495, 10.4103/ijo.IJO_308_21
64 W. Haider, N. Munroe, C. Pulletikurthi, et al.A comparative biocompatibility analysis of ternary nitinol alloys J Mater Eng Perform, 18 (5-6) (2009), pp. 760-764, 10.1007/s11665-009-9435-5
65 S.A. ShabalovskayaSurface, corrosion and biocompatibility aspects of Nitinol as an implant material Bio Med Mater Eng, 12 (1) (2002), pp. 69-109
66 M. Assad, A. Chernyshov, M.A. Leroux, et al.A new porous titanium-nickel alloy: Part 1. Cytotoxicity and genotoxicity evaluation Bio Med Mater Eng, 12 (3) (2002), pp. 225-237
67 D.J. Wever, A.G. Veldhuizen, M.M. Sanders, et al.Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy Biomaterials, 18 (16) (1997), pp. 1115-1120, 10.1016/s0142-9612(97)00041-0
68 N.R. Beeley, J.M. Stewart, R. Tano, et al.Development, implantation, in vivo elution, and retrieval of a biocompatible, sustained release subretinal drug delivery system J Biomed Mater Res, 76 (4) (2006), pp. 690-698, 10.1002/jbm.a.30567
69 J.L. Olson, R. Velez-Montoya, M. ErlangerOcular biocompatibility of nitinol intraocular clips Invest Ophthalmol Vis Sci, 53 (1) (2012), pp. 354-360, 10.1167/iovs.11-8496
70 S. Samet, J.A. Ong, I.I.K. AhmedHydrus microstent implantation for surgical management of glaucoma: a review of design, efficacy and safety Eye Vis (Lond), 6 (2019), p. 32, 10.1186/s40662-019-0157-y
71 I.I.K. Ahmed, A. Fea, L. Au, et al.A prospective randomized trial comparing Hydrus and iStent microinvasive glaucoma surgery implants for standalone treatment of open-angle glaucoma: the COMPARE study Ophthalmology, 127 (1) (2020), pp. 52-61, 10.1016/j.ophtha.2019.04.034
72 R.G.S. Dória, S.H. Freitas, Y.B. Hayasaka, et al.Evaluation of polyamide surgical mesh as an abdominal ventral implant in rabbits Acta Cir Bras, 33 (5) (2018), pp. 454-461, 10.1590/s0102-865020180050000008
73 P. Kim, U. Meyer, G. Schüpfer, et al.Tensile strength decreases and perfusion pressure of 3-holed polyamide epidural catheters increases in long-term epidural infusion Reg Anesth Pain Med, 36 (2) (2011), pp. 151-155, 10.1097/AAP.0b013e31820d418e
74 K. VinodSuprachoroidal shunts Curr Opin Ophthalmol, 29 (2) (2018), pp. 155-161, 10.1097/icu.0000000000000458
75 J.H. Lass, B.A. Benetz, J. He, et al.Corneal endothelial cell loss and morphometric changes 5 Years after phacoemulsification with or without CyPass micro-stent Am J Ophthalmol, 208 (2019), pp. 211-218, 10.1016/j.ajo.2019.07.016
76 S.C. Sen, A. GhoshGold as an intraocular foreign body Br J Ophthalmol, 67 (6) (1983), pp. 398-399, 10.1136/bjo.67.6.398
77 T.M. Shaarawy, M.M. Moschos, M.B. Sherwood128 – New Glaucoma Surgical Alternatives (2015)
78 A. Hueber, S. Roters, J.F. Jordan, et al.Retrospective analysis of the success and safety of gold micro shunt implantation in glaucoma BMC Ophthalmol, 13 (2013), p. 35, 10.1186/1471-2415-13-35
79 L. Agnifili, C. Costagliola, M. Figus, et al.Histological findings of failed gold micro shunts in primary open-angle glaucoma Graefes Arch Clin Exp Ophthalmol, 250 (1) (2012), pp. 143-149, 10.1007/s00417-011-1778-6
80 T.A. Berk, D.Y. Tam, L. Werner, et al.Electron microscopic evaluation of a gold glaucoma micro shunt after explantation J Cataract Refract Surg, 41 (3) (2015), pp. 674-680, 10.1016/j.jcrs.2014.12.001
81 N.A. Alenazi, M.A. Hussein, K.A. Alamry, et al.Modified polyether-sulfone membrane: a mini review Des Monomers Polym, 20 (1) (2017), pp. 532-546, 10.1080/15685551.2017.1398208
82 W. Zhao, Q. Mou, X. Zhang, et al.Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach Eur Polym J, 49 (3) (2013), pp. 738-751, 10.1016/j.eurpolymj.2012.11.018
83 J.S. Myers, I. Masood, D.M. Hornbeak, et al.Prospective evaluation of two iStent(®) trabecular stents, one iStent Supra(®) suprachoroidal stent, and postoperative prostaglandin in refractory glaucoma: 4-year outcomes Adv Ther, 35 (3) (2018), pp. 395-407, 10.1007/s12325-018-0666-4
84 M. F, D. JeThe role of minimally invasive glaucoma surgery devices in the management of glaucoma Optom Vis Sci : official publication of the American Academy of Optometry, 95 (2) (2018), pp. 155-162, 10.1097/opx.0000000000001173
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution