1. ,Jinan,China
2. ,Jinan,China
扫 描 看 全 文
Yingying Pan, Zhaoqiang Liu, Han Zhang. Research progress of lens zonules. [J]. AOPR 3(2):80-85(2023)
Yingying Pan, Zhaoqiang Liu, Han Zhang. Research progress of lens zonules. [J]. AOPR 3(2):80-85(2023) DOI: 10.1016/j.aopr.2023.02.002.
Background,The lens zonule, a circumferential system of fibres connecting the ciliary body to the lens, is responsible for centration of the lens. The structural, functional, and positional abnormalities of the zonular apparatus can lead to the abnormality of the intraocular structure, presenting a significant challenge to cataract surgery.,Main text,The lens zonule is the elaborate system of extracellular fibers, which not only centers the lens in the eye but also plays an important role in accommodation and lens immunity, maintains the shape of the lens, and corrects spherical aberration. The zonules may directly participate in the formation of cataract via the immune mechanism. Abnormal zonular fibers that affect the position and shape of the lens may play an important role in the pathogenesis of angle closure disease and increase the complexity of the surgery. Capsular tension rings and related endocapsular devices are used to provide sufficient capsular bag stabilization and ensure the safety of cataract surgery procedures. Better preoperative and intraoperative evaluation methods for zonules are needed for clinicians.,Conclusions,The microstructure, biomechanical properties, and physiological functions of the lens zonules help us to better understand the pathogenesis of cataract and glaucoma, facilitating the development of safer surgical procedures for cataract. Further studies are needed to carefully analyze the structure–function relationship of the zonular apparatus to explore new treatment strategies for cataract and glaucoma.
Background,The lens zonule, a circumferential system of fibres connecting the ciliary body to the lens, is responsible for centration of the lens. The structural, functional, and positional abnormalities of the zonular apparatus can lead to the abnormality of the intraocular structure, presenting a significant challenge to cataract surgery.,Main text,The lens zonule is the elaborate system of extracellular fibers, which not only centers the lens in the eye but also plays an important role in accommodation and lens immunity, maintains the shape of the lens, and corrects spherical aberration. The zonules may directly participate in the formation of cataract via the immune mechanism. Abnormal zonular fibers that affect the position and shape of the lens may play an important role in the pathogenesis of angle closure disease and increase the complexity of the surgery. Capsular tension rings and related endocapsular devices are used to provide sufficient capsular bag stabilization and ensure the safety of cataract surgery procedures. Better preoperative and intraoperative evaluation methods for zonules are needed for clinicians.,Conclusions,The microstructure, biomechanical properties, and physiological functions of the lens zonules help us to better understand the pathogenesis of cataract and glaucoma, facilitating the development of safer surgical procedures for cataract. Further studies are needed to carefully analyze the structure–function relationship of the zonular apparatus to explore new treatment strategies for cataract and glaucoma.
Cataract surgeryCapsulorhexisCrystalline lensGlaucomaLens zonule
1 S Subasi, N Yuksel, VL Karabas, et al.Late in-the-bag spontaneous IOL dislocation: risk factors and surgical outcomes Int J Ophthalmol, 12 (6) (2019), pp. 954-960, 10.18240/ijo.2019.06.12
2 BW. StreetenThe nature of the ocular zonule Trans Am Ophthalmol Soc, 80 (1982), pp. 823-854
3 A De Maria, PA Wilmarth, LL David, et al.Proteomic analysis of the bovine and human ciliary zonule Invest Ophthalmol Vis Sci, 58 (1) (2017), pp. 573-585, 10.1167/iovs.16-20866
4 D Hubmacher, M Schneider, SJ Berardinelli, et al.Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease Sci Rep, 7 (2017), Article 41871, 10.1038/srep41871
5 CY Qiao, H Zhang, Y Zhang, et al.Comparison study for the proportion of underdiagnosed zonulopathy in angle closure glaucoma Zhonghua Yan Ke Za Zhi, 58 (11) (2022), pp. 872-881, 10.3760/cma.j.cn112142-20211226-00608
6 A Eckersley, KT Mellody, S Pilkington, et al.Structural and compositional diversity of fibrillin microfibrils in human tissues J Biol Chem, 293 (14) (2018), pp. 5117-5133, 10.1074/jbc.RA117.001483
7 SM Zeigler, B Sloan, JA. JonesPathophysiology and pathogenesis of marfan syndrome Adv Exp Med Biol, 1348 (2021), pp. 185-206, 10.1007/978-3-030-80614-9_8
8 ARF Godwin, T Starborg, DJ Smith, et al.Multiscale imaging reveals the hierarchical organization of fibrillin microfibrils J Mol Biol, 430 (21) (2018), pp. 4142-4155, 10.1016/j.jmb.2018.08.012
9 CM. Kielty, Fell-Muir LectureFibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol, 98 (4) (2017), pp. 172-190, 10.1111/iep.12239
10 A Wang, D Mou, N Wang, et al.The imaging characteristics of lens subluxation on the ultrasound biomicroscopy Contrast Media Mol Imaging, 2022 (2022), Article 7030866, 10.1155/2022/7030866
11 CJ Pavlin, P Macken, GE Trope, et al.Accommodation and iridotomy in the pigment dispersion syndrome Ophthalmic Surg Laser, 27 (2) (1996), pp. 113-120
12 JW. RohenScanning electron microscopic studies of the zonular apparatus in human and monkey eyes Invest Ophthalmol Vis Sci, 18 (2) (1979), pp. 133-144
13 MC Wang, Y Lu, C. BaldockFibrillin microfibrils: a key role for the interbead region in elasticity J Mol Biol, 388 (1) (2009), pp. 168-179, 10.1016/j.jmb.2009.02.062
14 A Bernal, JM Parel, F. MannsEvidence for posterior zonular fiber attachment on the anterior hyaloid membrane Invest Ophthalmol Vis Sci, 47 (11) (2006), pp. 4708-4713, 10.1167/iovs.06-0441
15 E Lutjen-Drecoll, PL Kaufman, R Wasielewski, et al.Morphology and accommodative function of the vitreous zonule in human and monkey eyes Invest Ophthalmol Vis Sci, 51 (3) (2010), pp. 1554-1564, 10.1167/iovs.09-4008
16 CM Flugel-Koch, MA Croft, PL Kaufman, et al.Anteriorly located zonular fibers as a tool for fine regulation in accommodation Ophthalmic Physiol Opt, 36 (1) (2016), pp. 13-20, 10.1111/opo.12257
17 EI Assia, DJ Apple, RC Morgan, et al.The relationship between the stretching capability of the anterior capsule and zonules Invest Ophthalmol Vis Sci, 32 (10) (1991), pp. 2835-2839
18 RF. FisherThe ciliary body in accommodation Trans Ophthalmol Soc U K, 105 (Pt 2) (1962), pp. 208-219 1986
19 GW van Alphen, WP. GraebelElasticity of tissues involved in accommodation Vis Res, 31 (7–8) (1991), pp. 1417-1438, 10.1016/0042-6989(91)90061-9
20 R Michael, M Mikielewicz, C Gordillo, et al.Elastic properties of human lens zonules as a function of age in presbyopes Invest Ophthalmol Vis Sci, 53 (10) (2012), pp. 6109-6114, 10.1167/iovs.11-8702
21 EM Green, JC Mansfield, JS Bell, et al.The structure and micromechanics of elastic tissue Interface Focus, 4 (2) (2014), Article 20130058, 10.1098/rsfs.2013.0058
22 Y Shi, W Jones, W Beatty, et al.Latent-transforming growth factor beta-binding protein-2 (LTBP-2) is required for longevity but not for development of zonular fibers Matrix Biol, 95 (2021), pp. 15-31, 10.1016/j.matbio.2020.10.002
23 ER Tamm, C Flügel-Koch, B Mayer, et al.Nerve cells in the human ciliary muscle: ultrastructural and immunocytochemical characterization Investig Ophthalmol Vis Sci, 36 (2) (1995), pp. 414-426
24 TA Ferguson, DR Green, TS. GriffithCell death and immune privilege Int Rev Immunol, 21 (2–3) (2002), pp. 153-172, 10.1080/08830180212058
25 J DeDreu, CJ Bowen, CM Logan, et al.An immune response to the avascular lens following wounding of the cornea involves ciliary zonule fibrils Faseb J, 34 (7) (2020), pp. 9316-9336, 10.1096/fj.202000289R
26 J Gerhart, C Withers, C Gerhart, et al.Myo/Nog cells are present in the ciliary processes, on the zonule of Zinn and posterior capsule of the lens following cataract surgery Exp Eye Res, 171 (2018), pp. 101-105, 10.1016/j.exer.2018.03.016
27 JL Walker, AS. MenkoImmune cells in lens injury repair and fibrosis Exp Eye Res, 209 (2021), Article 108664, 10.1016/j.exer.2021.108664
28 AM Marzeda, KS. MidwoodInternal affairs: tenascin-C as a clinically relevant, endogenous driver of innate immunity J Histochem Cytochem, 66 (4) (2018), pp. 289-304, 10.1369/0022155418757443
29 L Zuliani-Alvarez, AM Marzeda, C Deligne, et al.Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers Nat Commun, 8 (1) (2017), p. 1595, 10.1038/s41467-017-01718-7
30 CS Craft, TA Pietka, T Schappe, et al.The extracellular matrix protein MAGP1 supports thermogenesis and protects against obesity and diabetes through regulation of TGF-β Diabetes, 63 (6) (2014), pp. 1920-1932, 10.2337/db13-1604
31 F Kuonen, I Surbeck, KY Sarin, et al.TGFβ, fibronectin and integrin alpha5beta1 promote invasion in basal cell carcinoma J Invest Dermatol, 138 (11) (2018), pp. 2432-2442, 10.1016/j.jid.2018.04.029
32 H Nishida-Fukuda, R Araki, M Shudou, et al.Ectodomain shedding of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) is induced by vascular endothelial growth factor A (VEGF-A) J Biol Chem, 291 (20) (2016), pp. 10490-10500, 10.1074/jbc.M115.683201
33 CM Logan, CJ Bowen, AS. MenkoInduction of immune surveillance of the dysmorphogenic lens Sci Rep, 7 (1) (2017), Article 16235, 10.1038/s41598-017-16456-5
34 Y Chen, J Gao, L Li, et al.The ciliary muscle and zonules of zinn modulate lens intracellular hydrostatic pressure through transient receptor potential vanilloid channels Invest Ophthalmol Vis Sci, 60 (13) (2019), pp. 4416-4424, 10.1167/iovs.19-27794
35 PJ Donaldson, AC Grey, B Maceo Heilman, et al.The physiological optics of the lens Prog Retin Eye Res, 56 (2017), pp. e1-e24, 10.1016/j.preteyeres.2016.09.002
36 J Gao, H Wang, X Sun, et al.The effects of age on lens transport Invest Ophthalmol Vis Sci, 54 (12) (2013), pp. 7174-7187, 10.1167/iovs.13-12593
37 S Sindhu Kumari, K. VaradarajAquaporin 5 knockout mouse lens develops hyperglycemic cataract Biochem Biophys Res Commun, 441 (2) (2013), pp. 333-338, 10.1016/j.bbrc.2013.10.058 Epub 2013 Oct 19
38 L Faivre, RJ Gorlin, MK Wirtz, et al.In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome J Med Genet, 40 (1) (2003), pp. 34-36, 10.1136/jmg.40.1.34
39 A Kumar, MR Duvvari, VC Prabhakaran, et al.A homozygous mutation in LTBP2 causes isolated microspherophakia Hum Genet, 128 (4) (2010), pp. 365-371, 10.1007/s00439-010-0858-8
40 W Jones, J Rodriguez, S. BassnettTargeted deletion of fibrillin-1 in the mouse eye results in ectopia lentis and other ocular phenotypes associated with Marfan syndrome Dis Model Mech, 12 (1) (2019), 10.1242/dmm.037283
41 European Glaucoma SocietyEuropean Glaucoma Society terminology and guidelines for glaucoma, 5th edition Br J Ophthalmol, 105 (Suppl 1) (2021), pp. 1-169, 10.1136/bjophthalmol-2021-egsguidelines
42 X Xing, L Huang, F Tian, et al.Biometric indicators of eyes with occult lens subluxation inducing secondary acute angle closure BMC Ophthalmol, 20 (1) (2020), p. 87, 10.1186/s12886-020-01355-7
43 Z Gatzioufas, K Kopsidas, B Gyongyossy, et al.Late-onset anterior dislocation of a posterior chamber intraocular lens in a patient with pseudoexfoliation syndrome Case Rep Ophthalmol, 2 (1) (2011), pp. 1-4, 10.1159/000323861
44 A Salimi, A Fanous, H Watt, et al.Prevalence of zonulopathy in primary angle closure disease Clin Exp Ophthalmol, 49 (9) (2021), pp. 1018-1026, 10.1111/ceo.13983
45 CY Qiao, H Zhang, Y Zhang, et al.Comparison study for the proportion of underdiagnosed zonulopathy in angle closure glaucoma Zhonghua Yan Ke Za Zhi, 58 (11) (2022), pp. 872-881, 10.3760/cma.j.cn112142-20211226-00608
46 E Toklu, M Altinisik, A Elbay, et al.Comparison of postoperative anterior segment changes associated with pars plana vitrectomy with and without vitreous base shaving Int J Ophthalmol, 18 (11) (2020), pp. 1745-1752, 10.18240/ijo.2020.11.10 13
47 J Kwon, KR. SungFactors associated with zonular instability during cataract surgery in eyes with acute angle closure attack Am J Ophthalmol, 183 (2017), pp. 118-124, 10.1016/j.ajo.2017.09.003
48 DK Roberts, Y Yang, CE Morettin, et al.Morphologic patterns formed by the anomalous fibers occurring along the anterior capsule of the crystalline lens in people with the long anterior zonule trait Anat Rec, 300 (7) (2017), pp. 1336-1347, 10.1002/ar.23570
49 DK Roberts, TL Newman, MF Roberts, et al.Long anterior lens zonules and intraocular pressure Invest Ophthalmol Vis Sci, 59 (5) (2018), pp. 2015-2023, 10.1167/iovs.17-23705
50 M Khurana, N Ganesh, AG Jaiswal, et al.Long anterior zonules and angle closure disease J Glaucoma, 31 (1) (2022), pp. 41-47, 10.1097/IJG.0000000000001898
51 HC Semple, SF. BallPigmentary glaucoma in the black population Am J Ophthalmol, 109 (5) (1990), pp. 518-522, 10.1016/s0002-9394(14)70680-4
52 TL Newman, DK Roberts, CE Morettin, et al.Krukenberg’s spindles strongly suggest long anterior zonule associated pigment dispersion mechanism in older patients Invest Ophthalmol Vis Sci, 61 (8) (2020), p. 8, 10.1167/iovs.61.8.8
53 DK Roberts, PS Lo, JE Winters, et al.Prevalence of pigmented lens striae in a black population: a potential indicator of age-related pigment dispersal in the anterior segment Optom Vis Sci, 79 (11) (2002), pp. 681-687, 10.1097/00006324-200211000-00005
54 V Subrayan, B Morris, AM Armbrecht, et al.Long anterior lens zonules in late-onset retinal degeneration (L-ORD) Am J Ophthalmol, 140 (6) (2005), pp. 1127-1129, 10.1016/j.ajo.2005.06.023
55 R Ayyagari, MN Mandal, AJ Karoukis, et al.Late-onset macular degeneration and long anterior lens zonules result from a CTRP5 gene mutation Invest Ophthalmol Vis Sci, 46 (9) (2005), pp. 3363-3371, 10.1167/iovs.05-0159
56 WL Lin, WJ Geng, M Ji, et al.Effect of phacoemulsification on the Berger space Zhonghua Yan Ke Za Zhi, 58 (7) (2022), pp. 506-512, 10.3760/cma.j.cn112142-20220113-00013
57 KM Miller, TA Oetting, JP Tweeten, et al.Cataract in the adult eye preferred Practice pattern Ophthalmology, 129 (1) (2022), pp. P1-P126, 10.1016/j.ophtha.2021.10.006
58 BJ Shingleton, YN Neo, V Cvintal, et al.Outcome of phacoemulsification and intraocular lens implantion in eyes with pseudoexfoliation and weak zonules Acta Ophthalmol, 95 (2) (2017), pp. 182-187, 10.1111/aos.13110
59 T Teshigawara, A Meguro, S Sanjo, et al.The advantages of femtosecond laser-assisted cataract surgery for zonulopathy Int Med Case Rep J, 12 (2019), pp. 109-116, 10.2147/IMCRJ.S189367
60 BC Little, JH Smith, M. PackerLittle capsulorhexis tear-out rescue J Cataract Refract Surg, 32 (9) (2006), pp. 1420-1422, 10.1016/j.jcrs.2006.03.038
61 SP Chee, A. JapManagement of traumatic severely subluxated cataracts Am J Ophthalmol, 151 (5) (2011), pp. 866-871, 10.1016/j.ajo.2010.10.035 e1
62 T Miyoshi, S Fujie, H Yoshida, et al.Effects of capsular tension ring on surgical outcomes of premium intraocular lens in patients with suspected zonular weakness PLoS One, 15 (2) (2020), Article e0228999, 10.1371/journal.pone.0228999
63 D Dhingra, C Malhotra, V Jakhar, et al.Combination of capsular tension ring and capsular tension segment for the management of lens coloboma>4clock hours Indian J Ophthalmol, 67 (10) (2019), pp. 1684-1687, 10.4103/ijo.IJO_1762_18
64 Y Mizuno, Y. SugimotoA comparative study of transscleral suture-fixated and scleral-fixated intraocular lens implantation Int Ophthalmol, 39 (4) (2019), pp. 839-845, 10.1007/s10792-018-0883-5
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution