1. ,Beijing,China,100853
2. ,Beijing,China,100853
3. ,Lanzhou,China
4. ,Lanzhou,China
5. ,Lanzhou,China
6. ,Lanzhou,China,730000
扫 描 看 全 文
Xintong Xu, Lindan Xie, Lili Wei, et al. Efficacy and safety of monoclonal antibodies in neuromyelitis optica spectrum disorders: A survival meta-analysis of randomized controlled trials. [J]. AOPR 2(3):100064(2022)
Xintong Xu, Lindan Xie, Lili Wei, et al. Efficacy and safety of monoclonal antibodies in neuromyelitis optica spectrum disorders: A survival meta-analysis of randomized controlled trials. [J]. AOPR 2(3):100064(2022) DOI: 10.1016/j.aopr.2022.100064.
Background,Monoclonal antibodies such as rituximab (RTX), eculizumab, inebilizumab, satralizumab, and tocilizumab have been found to be effective therapies for neuromyelitis optica spectrum disease (NMOSD) in several clinical randomized controlled trials.,Objective,The purpose of this meta-analysis of randomized controlled trials was to assess the efficacy and safety of monoclonal antibodies in the treatment of NMOSD.,Methods,We searched the following databases for relevant English language literature from the establishment of the database to June 2021: PubMed, Embase, Cohorane Library, the Central Register of Controlled Trials (CENTRAL), and Web of Science. Randomized controlled trials of monoclonal antibodies were the targets of the review.,Results,We included seven trials containing 775 patients (485 in the monoclonal antibody group and 290 in the control group). Patients in the monoclonal group (HR 0.24, 95% CI: 0.14 to 0.40,P, ,<, 0.00001), as well as patients with seropositive AQP4-IgG (HR 0.18, 95% CI: 0.11 to 0.29,P, ,<, 0.00001), both had a higher free recurrence rate than that in the control group. In the first year (HR 0.25, 95% CI: 0.09 to 0.71,P, = 0.009) and the second year (HR 0.32, 95% CI: 0.13 to 0.81,P, = 0.02), no relapses were documented. The average changes of the expanded disability status scale (EDSS) score decreased by 0.29 (95% CI: −0.09 to 0.51,P, = 0.005). Upper respiratory tract infection (OR 1.52, 95% CI: 0.76 to 3.04,P, = 0.24), urinary tract infection(OR 0.79, 95% CI: 0.51 to 1.21,P, = 0.27), and headache (OR 1.30, 95% CI: 0.78 to 2.17,P, = 0.31) were three most frequent adverse reactions.,Conclusions,Monoclonal antibodies are particularly effective treatments in avoiding recurrence for NMOSD patients, according to this meta-analysis. The associated adverse responses are not significantly different from those seen with traditional immunosuppressants.
Background,Monoclonal antibodies such as rituximab (RTX), eculizumab, inebilizumab, satralizumab, and tocilizumab have been found to be effective therapies for neuromyelitis optica spectrum disease (NMOSD) in several clinical randomized controlled trials.,Objective,The purpose of this meta-analysis of randomized controlled trials was to assess the efficacy and safety of monoclonal antibodies in the treatment of NMOSD.,Methods,We searched the following databases for relevant English language literature from the establishment of the database to June 2021: PubMed, Embase, Cohorane Library, the Central Register of Controlled Trials (CENTRAL), and Web of Science. Randomized controlled trials of monoclonal antibodies were the targets of the review.,Results,We included seven trials containing 775 patients (485 in the monoclonal antibody group and 290 in the control group). Patients in the monoclonal group (HR 0.24, 95% CI: 0.14 to 0.40,P, ,<, 0.00001), as well as patients with seropositive AQP4-IgG (HR 0.18, 95% CI: 0.11 to 0.29,P, ,<, 0.00001), both had a higher free recurrence rate than that in the control group. In the first year (HR 0.25, 95% CI: 0.09 to 0.71,P, = 0.009) and the second year (HR 0.32, 95% CI: 0.13 to 0.81,P, = 0.02), no relapses were documented. The average changes of the expanded disability status scale (EDSS) score decreased by 0.29 (95% CI: −0.09 to 0.51,P, = 0.005). Upper respiratory tract infection (OR 1.52, 95% CI: 0.76 to 3.04,P, = 0.24), urinary tract infection(OR 0.79, 95% CI: 0.51 to 1.21,P, = 0.27), and headache (OR 1.30, 95% CI: 0.78 to 2.17,P, = 0.31) were three most frequent adverse reactions.,Conclusions,Monoclonal antibodies are particularly effective treatments in avoiding recurrence for NMOSD patients, according to this meta-analysis. The associated adverse responses are not significantly different from those seen with traditional immunosuppressants.
NMOSDRandomized controlled trialsMonoclonal antibodyMeta-analysisFree-relapseAdverse events
1 D.M. Wingerchuk, B. Banwell, J.L. Bennett, et al.International consensus diagnostic criteria for neuromyelitis optica spectrum disorders Neurology, 85 (2) (2015), pp. 177-189, 10.1212/wnl.0000000000001729
2 S. Jarius, F. Paul, B.G. Weinshenker, et al.Neuromyelitis optica Nat Rev Dis Prim, 6 (1) (2020), p. 85, 10.1038/s41572-020-0214-9
3 I. Kawachi, H. LassmannNeurodegeneration in multiple sclerosis and neuromyelitis optica J Neurol Neurosurg Psychiatry, 88 (2) (2017), pp. 137-145, 10.1136/jnnp-2016-313300
4 C. Valencia-Sanchez, D.M. WingerchukEmerging targeted therapies for neuromyelitis optica spectrum disorders BioDrugs (2020), 10.1007/s40259-020-00460-9
5 R. Narayan, A. Simpson, K. Fritsche, et al.MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder Mult Scler Relat Disord, 25 (2018), pp. 66-72, 10.1016/j.msard.2018.07.025
6 Y. Mao-Draayer, S. Thiel, E.A. Mills, et al.Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations Nat Rev Neurol, 16 (3) (2020), pp. 154-170, 10.1038/s41582-020-0313-y
7 C.T. Tan, Z. Mao, W. Qiu, et al.International consensus diagnostic criteria for neuromyelitis optica spectrum disorders Neurology, 86 (5) (2016), pp. 491-492, 10.1212/wnl.0000000000002366
8 T. Holmøy, R.A. Høglund, Z. Illes, et al.Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder J Neurol (2020), 10.1007/s00415-020-10235-5
9 C. Trebst, S. Jarius, A. Berthele, et al.Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS) J Neurol, 261 (1) (2014), pp. 1-16, 10.1007/s00415-013-7169-7
10 S.H. Kim, H. Jang, N.Y. Park, et al.Discontinuation of immunosuppressive therapy in patients with neuromyelitis optica spectrum disorder with aquaporin-4 antibodies Neurol Neuroimmunol Neuroinflamm, 8 (2) (2021), 10.1212/nxi.0000000000000947
11 E. Carnero Contentti, J.I. Rojas, E. Cristiano, et al.Latin American consensus recommendations for management and treatment of neuromyelitis optica spectrum disorders in clinical practice Mult Scler Relat Disord, 45 (2020), p. 102428, 10.1016/j.msard.2020.102428
12 C. Qin, R. Tao, S.Q. Zhang, et al.Predictive factors of resistance to high-dose steroids therapy in acute attacks of neuromyelitis optica spectrum disorder Front Neurol, 11 (2020), p. 585471, 10.3389/fneur.2020.585471
13 P. Kosiyakul, S. Songwisit, P. Ungprasert, et al.Effect of plasma exchange in neuromyelitis optica spectrum disorder: a systematic review and meta-analysis Ann Clin Transl Neurol, 7 (11) (2020), pp. 2094-2102, 10.1002/acn3.51203
14 I. Kleiter, A. Gahlen, N. Borisow, et al.Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions Neurol Neuroimmunol Neuroinflamm, 5 (6) (2018), p. e504, 10.1212/nxi.0000000000000504
15 J. Palace, M.I. Leite, A. JacobA practical guide to the treatment of neuromyelitis optica Practical Neurol, 12 (4) (2012), pp. 209-214, 10.1136/practneurol-2012-000237
16 B.A.C. Cree, J.L. Bennett, H.J. Kim, et al.Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial Lancet, 394 (10206) (2019), pp. 1352-1363, 10.1016/S0140-6736(19)31817-3
17 NctComparison of clinical effects of azathioprine and rituximab NMO-SD patients https://clinicaltrialsgov/show/NCT03002038 (2016)
18 S.J. Pittock, A. Berthele, K. Fujihara, et al.Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder N Engl J Med, 381 (7) (2019), pp. 614-625, 10.1056/NEJMoa1900866
19 M. Tahara, T. Oeda, K. Okada, et al.Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial Lancet Neurol, 19 (4) (2020), pp. 298-306, 10.1016/S1474-4422(20)30066-1
20 A. Traboulsee, B.M. Greenberg, J.L. Bennett, et al.Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial Lancet Neurol, 19 (5) (2020), pp. 402-412, 10.1016/S1474-4422(20)30078-8
21 T. Yamamura, I. Kleiter, K. Fujihara, et al.Trial of satralizumab in neuromyelitis optica spectrum disorder N Engl J Med, 381 (22) (2019), pp. 2114-2124, 10.1056/NEJMoa1901747
22 C. Zhang, M. Zhang, W. Qiu, et al.Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial Lancet Neurol, 19 (5) (2020), pp. 391-401, 10.1016/S1474-4422(20)30070-3
23 Xiu-xia Li, Xue-mei Han, K-h YangDevelopment and prospect of evidence-based Health policy Library and Information, 3 (2018), pp. 43-49
24 K-h YangThe emergence, development and future of evidence-based social science Library and Information (3) (2018), pp. 1-10, 10.11968/tsyqb.1003-6938.2018038
25 Ke-hu Yang, Xiu-xia Li, Z-g BaiEvidence-based Social Science Research Methods: Systematic Reviews and Meta-Analysis Lanzhou University Press (2018)
26 S. Gülen, S. Fonnes, K. Andresen, et al.Increasing number of authors in Cochrane reviews J Evid Base Med, 13 (1) (2020), pp. 34-41, 10.1111/jebm.12371
27 J. Yang, Y. Li, Q. Liu, et al.Brief introduction of medical database and data mining technology in big data era J Evid Base Med, 13 (1) (2020), pp. 57-69, 10.1111/jebm.12373
28 T. Xue, Y. Yang, Q. Lu, et al.Efficacy and safety of monoclonal antibody therapy in neuromyelitis optica spectrum disorders: evidence from randomized controlled trials Mult Scler Relat Disord, 43 (2020), Article 102166, 10.1016/j.msard.2020.102166
29 D.M. WingerchukNeuromyelitis optica Int MS J, 13 (2) (2006), pp. 42-50
30 S. Luo, Y. Long, W. Xiao, et al.Risk of bias assessments and reporting quality of systematic reviews and randomized controlled trials examining acupuncture for depression: an overview and meta-epidemiology study J Evid Base Med, 13 (1) (2020), pp. 25-33, 10.1111/jebm.12372
31 M.Z. Andersen, S. Fonnes, K. Andresen, et al.Group authorships in Cochrane had low compliance with Cochrane recommendations J Evid Base Med, 13 (3) (2020), pp. 199-205, 10.1111/jebm.12396
32 J.F. Tierney, L.A. Stewart, D. Ghersi, et al.Practical methods for incorporating summary time-to-event data into meta-analysis Trials, 8 (2007), p. 16, 10.1186/1745-6215-8-16
33 Q. Hu, B. Wu, M. Zhan, et al.Adverse events identified by the global trigger tool at a university hospital: a retrospective medical record review J Evid Base Med, 12 (2) (2019), pp. 91-97, 10.1111/jebm.12329
34 S.H. Kim, I.H. Jeong, J.W. Hyun, et al.Treatment outcomes with rituximab in 100 patients with neuromyelitis optica: influence of FCGR3A polymorphisms on the therapeutic response to rituximab JAMA Neurol, 72 (9) (2015), pp. 989-995, 10.1001/jamaneurol.2015.1276
35 S.J. Pittock, V.A. Lennon, A. McKeon, et al.Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study Lancet Neurol, 12 (6) (2013), pp. 554-562, 10.1016/s1474-4422(13)70076-0
36 M. Ringelstein, I. Ayzenberg, J. Harmel, et al.Long-term therapy with interleukin 6 receptor blockade in highly active neuromyelitis optica spectrum disorder JAMA Neurol, 72 (7) (2015), pp. 756-763, 10.1001/jamaneurol.2015.0533
37 Y. Shimizu, K. Fujihara, T. Ohashi, et al.Pregnancy-related relapse risk factors in women with anti-AQP4 antibody positivity and neuromyelitis optica spectrum disorder Mult Scler, 22 (11) (2016), pp. 1413-1420, 10.1177/1352458515583376
38 M.M. Nour, I. Nakashima, E. Coutinho, et al.Pregnancy outcomes in aquaporin-4-positive neuromyelitis optica spectrum disorder Neurology, 86 (1) (2016), pp. 79-87, 10.1212/wnl.0000000000002208
39 W. Kim, S.H. Kim, I. Nakashima, et al.Influence of pregnancy on neuromyelitis optica spectrum disorder Neurology, 78 (16) (2012), pp. 1264-1267, 10.1212/WNL.0b013e318250d812
40 P. Palmeira, C. Quinello, A.L. Silveira-Lessa, et al.IgG placental transfer in healthy and pathological pregnancies Clin Dev Immunol, 2012 (2012), p. 985646, 10.1155/2012/985646
41 S.H. Kim, S.Y. Huh, H. Jang, et al.Outcome of pregnancies after onset of the neuromyelitis optica spectrum disorder Eur J Neurol, 27 (8) (2020), pp. 1546-1555, 10.1111/ene.14274
42 N. Borisow, K. Hellwig, F. Paul[Neuromyelitis optica spectrum disorder and pregnancy] Nervenarzt, 89 (6) (2018), pp. 666-673, 10.1007/s00115-018-0486-4
43 N. Borisow, K. Hellwig, F. PaulNeuromyelitis optica spectrum disorders and pregnancy: relapse-preventive measures and personalized treatment strategies EPMA J, 9 (3) (2018), pp. 249-256, 10.1007/s13167-018-0143-9
44 2020 L.R. Sammaritano, B.L. Bermas, E.E. Chakravarty, et al.American college of rheumatology guideline for the management of reproductive Health in rheumatic and musculoskeletal diseases Arthritis Rheumatol, 72 (4) (2020), pp. 529-556, 10.1002/art.41191
45 J.P. Stellmann, M. Krumbholz, T. Friede, et al.Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response J Neurol Neurosurg Psychiatry, 88 (8) (2017), pp. 639-647, 10.1136/jnnp-2017-315603
46 T. Holmøy, R.A. Høglund, Z. Illes, et al.Recent progress in maintenance treatment of neuromyelitis optica spectrum disorder J Neurol (2020), 10.1007/s00415-020-10235-5
47 K. Fujihara, J.L. Bennett, J. de Seze, et al.Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology Neurol Neuroimmunol Neuroinflamm, 7 (5) (2020), 10.1212/nxi.0000000000000841
48 C.W. Lin, I.H. Lin, T.C. Chen, et al.Clinical course and treatment response of neuromyelitis optica spectrum disease: an 8-year experience Asia Pac J Ophthalmol (Phila)., 8 (3) (2019), pp. 206-210, 10.22608/apo.2018247
49 A. Kunchok, C. Malpas, P. Nytrova, et al.Clinical and therapeutic predictors of disease outcomes in AQP4-IgG+ neuromyelitis optica spectrum disorder Mult Scler Relat Disord, 38 (2020), Article 101868, 10.1016/j.msard.2019.101868
50 Z. Shi, Q. Du, H. Chen, et al.Effects of immunotherapies and prognostic predictors in neuromyelitis optica spectrum disorder: a prospective cohort study J Neurol, 267 (4) (2020), pp. 913-924, 10.1007/s00415-019-09649-7
51 R.A. Kessler, M.A. Mealy, M. LevyEarly indicators of relapses vs pseudorelapses in neuromyelitis optica spectrum disorder Neurol Neuroimmunol Neuroinflamm, 3 (5) (2016), p. e269, 10.1212/nxi.0000000000000269
52 B.A. Cree, J.L. Bennett, M. Sheehan, et al.Placebo-controlled study in neuromyelitis optica-Ethical and design considerations Mult Scler, 22 (7) (2016), pp. 862-872, 10.1177/1352458515620934
53 M. D'Souza, A. Papadopoulou, M. Levy, et al.Diagnostic procedures in suspected attacks in patients with neuromyelitis optica spectrum disorders: results of an international survey Mult Scler Relat Disord, 41 (2020), Article 102027, 10.1016/j.msard.2020.102027
54 B.A. Cree, S. Lamb, K. Morgan, et al.An open label study of the effects of rituximab in neuromyelitis optica Neurology, 64 (7) (2005), pp. 1270-1272, 10.1212/01.Wnl.0000159399.81861.D5
55 S.J. Pittock, V.A. Lennon, A. McKeon, et al.Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study Lancet Neurol, 12 (6) (2013), pp. 554-562, 10.1016/s1474-4422(13)70076-0
56 M.A. Mealy, M. LevyA pilot safety study of ublituximab, a monoclonal antibody against CD20, in acute relapses of neuromyelitis optica spectrum disorder Medicine, 98 (25) (2019), Article e15944, 10.1097/MD.0000000000015944
57 S. Meyer-Moock, Y.S. Feng, M. Maeurer, et al.Systematic literature review and validity evaluation of the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis BMC Neurol, 14 (2014), p. 58, 10.1186/1471-2377-14-58
58 A.I. Wallach, M. Tremblay, I. KisterAdvances in the treatment of neuromyelitis optica spectrum disorder Neurol Clin (2020), 10.1016/j.ncl.2020.09.003
59 M.A. Agius, G. Klodowska-Duda, M. Maciejowski, et al.Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study Mult Scler, 25 (2) (2019), pp. 235-245, 10.1177/1352458517740641
60 J. Ciron, B. Audoin, B. Bourre, et al.Recommendations for the use of Rituximab in neuromyelitis optica spectrum disorders Rev Neurol (Paris), 174 (4) (2018), pp. 255-264, 10.1016/j.neurol.2017.11.005
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution