1. Eye Center, Second Affiliated Hospital of School of Medicine, Zhejiang University,Zhejiang,Hangzhou,China,310009
扫 描 看 全 文
Xinyi Chen, Jingjie Xu, Xiangjun Chen, et al. Cataract: Advances in surgery and whether surgery remains the only treatment in future. [J]. AOPR 1(1):100008(2021)
Xinyi Chen, Jingjie Xu, Xiangjun Chen, et al. Cataract: Advances in surgery and whether surgery remains the only treatment in future. [J]. AOPR 1(1):100008(2021) DOI: 10.1016/j.aopr.2021.100008.
BackgroundCataract is the world's leading eye disease that causes blindness. The prevalence of cataract aged 40 years and older is approximately 11.8%–18.8%. Currently, surgery is the only way to treat cataracts.
CataractSurgeryFLACSFemtosecondLanosterol
1 See International. Cataracts https://www.seeintl.org/cataracts/ (Accessed)
2 NeiCataract data and statistics https://www.nei.nih.gov/learn-about-eye-health/resources-for-health-educators/eye-health-data-and-statistics/cataract-data-and-statistics (Accessed)
3 J. Chuang, K.C. Shih, T.C. Chan, et al.Preoperative optimization of ocular surface disease before cataract surgery J Cataract Refract Surg, 43 (12) (2017), pp. 1596-1607, 10.1016/j.jcrs.2017.10.033
4 S.Y. Wang, M.S. Stem, G. Oren, et al.Patient-centered and visual quality outcomes of premium cataract surgery: a systematic review Eur J Ophthalmol, 27 (4) (2017), pp. 387-401, 10.5301/ejo.5000978
5 N. Visser, N.J. Bauer, R.M. NuijtsToric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications J Cataract Refract Surg, 39 (4) (2013), pp. 624-637, 10.1016/j.jcrs.2013.02.020
6 L. Kessel, J. Andresen, B. Tendal, et al.Toric intraocular lenses in the correction of astigmatism during cataract surgery: a systematic review and meta-analysis Ophthalmology, 123 (2) (2016), pp. 275-286, 10.1016/j.ophtha.2015.10.002
7 N.E. de Vries, C.A. Webers, W.R. Touwslager, et al.Dissatisfaction after implantation of multifocal intraocular lenses J Cataract Refract Surg, 37 (5) (2011), pp. 859-865, 10.1016/j.jcrs.2010.11.032
8 N. Mamalis, J. Brubaker, D. Davis, et al.Complications of foldable intraocular lenses requiring explantation or secondary intervention - 2007 survey update J Cataract Refract Surg, 34 (9) (2008), pp. 1584-1591, 10.1016/j.jcrs.2008.05.046
9 T. Kohnen, R. SuryakumarExtended depth-of-focus technology in intraocular lenses J Cataract Refract Surg, 46 (2) (2020), pp. 298-304, 10.1097/j.jcrs.0000000000000109
10 R. Bellucci, M. Cargnoni, C. BellucciClinical and aberrometric evaluation of a new extended depth-of-focus intraocular lens based on spherical aberration J Cataract Refract Surg, 45 (7) (2019), pp. 919-926, 10.1016/j.jcrs.2019.02.023
11 R. Bellucci, M.C. CuratoloA new extended depth of focus intraocular lens based on spherical aberration J Refract Surg, 33 (6) (2017), pp. 389-394, 10.3928/1081597X-20170329-01
12 Y. Zhong, K. Wang, X. Yu, et al.Comparison of trifocal or hybrid multifocal-extended depth of focus intraocular lenses: a systematic review and meta-analysis Sci Rep, 11 (1) (2021), p. 6699, 10.1038/s41598-021-86222-1
13 J. Zvornicanin, E. ZvornicaninPremium intraocular lenses: the past, present and future J Curr Ophthalmol, 30 (4) (2018), pp. 287-296, 10.1016/j.joco.2018.04.003
14 Y.B. Yu, Y.N. Zhu, W. Wang, et al.A comparable study of clinical and optical outcomes after 1.8, 2.0 mm microcoaxial and 3.0 mm coaxial cataract surgery Int J Ophthalmol, 9 (3) (2016), pp. 399-405, 10.18240/ijo.2016.03.13
15 C. Jin, X. Chen, A. Law, et al.Different-sized incisions for phacoemulsification in age-related cataract Cochrane Database Syst Rev, 9 (2017), p. CD010510, 10.1002/14651858.CD010510.pub2
16 M. Chen, C. Swinney, M. ChenComparing the intraoperative complication rate of femtosecond laser-assisted cataract surgery to traditional phacoemulsification Int J Ophthalmol, 8 (1) (2015), pp. 201-203, 10.3980/j.issn.2222-3959.2015.01.34
17 H. Noh, Y.S. Yoo, K.Y. Shin, et al.Comparison of penetrating femtosecond laser-assisted astigmatic keratotomy and toric intraocular lens implantation for correction of astigmatism in cataract surgery Sci Rep, 11 (1) (2021), p. 7340, 10.1038/s41598-021-86763-5
18 X. Zhang, Y. Yu, G. Zhang, et al.Performance of femtosecond laser-assisted cataract surgery in Chinese patients with cataract: a prospective, multicenter, registry study BMC Ophthalmol, 19 (1) (2019), p. 77, 10.1186/s12886-019-1079-0
19 X. Chen, K. Chen, J. He, et al.Comparing the curative effects between femtosecond laser-assisted cataract surgery and conventional phacoemulsification surgery: a meta-analysis PLoS One, 11 (3) (2016), Article e0152088, 10.1371/journal.pone.0152088
20 X. Chen, W. Xiao, S. Ye, et al.Efficacy and safety of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification for cataract: a meta-analysis of randomized controlled trials Sci Rep, 5 (2015), p. 13123, 10.1038/srep13123
21 M. Popovic, X. Campos-Moller, M.B. Schlenker, et al.Efficacy and safety of femtosecond laser-assisted cataract surgery compared with manual cataract surgery: a meta-analysis of 14 567 eyes Ophthalmology, 123 (10) (2016), pp. 2113-2126, 10.1016/j.ophtha.2016.07.005
22 N. Stanojcic, H.W. Roberts, V.K. Wagh, et al.A randomised controlled trial comparing femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery: 12-month results Br J Ophthalmol, 105 (5) (2021), pp. 631-638, 10.1136/bjophthalmol-2020-316311
23 C. Schweitzer, A. Brezin, B. Cochener, et al.Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial Lancet, 395 (2020), pp. 212-224, 10.1016/S0140-6736(19)32481-X 10219
24 C.M. Kolb, M. Shajari, L. Mathys, et al.Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery: a meta-analysis and systematic review J Cataract Refract Surg, 46 (8) (2020), pp. 1075-1085, 10.1097/j.jcrs.0000000000000228
25 Z. Ye, Z. Li, S. HeA Meta-Analysis Comparing postoperative complications and outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification for cataract J Ophthalmol, 2017 (2017), p. 3849152, 10.1155/2017/3849152
26 D. Dzhaber, O.M. Mustafa, F. Alsaleh, et al.Visual and refractive outcomes and complications in femtosecond laser-assisted versus conventional phacoemulsification cataract surgery: findings from a randomised, controlled clinical trial Br J Ophthalmol, 104 (11) (2020), pp. 1596-1600, 10.1136/bjophthalmol-2019-314548
27 A.C. Day, J.M. Burr, K. Bennett, et al.Femtosecond laser-assisted cataract surgery compared with phacoemulsification cataract surgery: randomized noninferiority trial with 1-year outcomes J Cataract Refract Surg, 46 (10) (2020), pp. 1360-1367, 10.1097/j.jcrs.0000000000000257
28 A.C. Day, J.M. Burr, K. Bennett, et al.Femtosecond laser-assisted cataract surgery versus phacoemulsification cataract surgery (FACT): a randomized noninferiority trial Ophthalmology, 127 (8) (2020), pp. 1012-1019, 10.1016/j.ophtha.2020.02.028
29 A. Schroeter, M. Kropp, Z. Cvejic, et al.Comparison of femtosecond laser-assisted and ultrasound-assisted cataract surgery with focus on endothelial analysis Sensors, 21 (3) (2021), 10.3390/s21030996
30 Y. Wang, J. Zhang, M. Qin, et al.Comparison of optical quality and distinct macular thickness in femtosecond laser-assisted versus phacoemulsification cataract surgery BMC Ophthalmol, 20 (1) (2020), p. 42, 10.1186/s12886-020-1319-3
31 Y. Yu, X. Chen, H. Hua, et al.Comparative outcomes of femtosecond laser-assisted cataract surgery and manual phacoemusification: a six-month follow-up Clin Exp Ophthalmol, 44 (6) (2016), pp. 472-480, 10.1111/ceo.12695
32 S. Van Nuffel, M.F. Claeys, M.H. ClaeysCystoid macular edema following cataract surgery with low-energy femtosecond laser versus conventional phacoemulsification Clin Ophthalmol, 14 (2020), pp. 2873-2878, 10.2147/OPTH.S261565
33 M.S. Shaheen, A. AbouSamra, H.A. Helaly, et al.Comparison between refractive outcomes of femtosecond laser-assisted cataract surgery and standard phacoemulsification BMC Ophthalmol, 20 (1) (2020), p. 1, 10.1186/s12886-019-1277-9
34 Y. Zhu, K. Shi, K. Yao, et al.Parameters of capsulorrhexis and intraocular lens decentration after femtosecond and manual capsulotomies in high myopic patients with cataracts Front Med, 8 (2021), p. 640269, 10.3389/fmed.2021.640269
35 X. Chen, Y. Yu, X. Song, et al.Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts J Cataract Refract Surg, 43 (4) (2017), pp. 486-491, 10.1016/j.jcrs.2017.01.010
36 A.H. Assaf, M.G. Aly, R.G. Zaki, et al.Femtosecond laser-assisted cataract surgery in soft and hard nuclear cataracts: a comparison of effective phacoemulsification time Clin Ophthalmol, 15 (2021), pp. 1095-1100, 10.2147/OPTH.S300145
37 D. Lyu, Z. Shen, L. Zhang, et al.Comparison of perioperative parameters in femtosecond laser-assisted cataract surgery using 3 nuclear fragmentation patterns Am J Ophthalmol, 213 (2020), pp. 283-292, 10.1016/j.ajo.2019.12.017
38 Y. Zhu, X. Chen, P. Chen, et al.Lens capsule-related complications of femtosecond laser-assisted capsulotomy versus manual capsulorhexis for white cataracts J Cataract Refract Surg, 45 (3) (2019), pp. 337-342, 10.1016/j.jcrs.2018.10.037
39 K.R. Lai, X.B. Zhang, Y.H. Yu, et al.Comparative clinical outcomes of Tecnis toric IOL implantation in femtosecond laser-assisted cataract surgery and conventional phacoemulsification surgery Int J Ophthalmol, 13 (1) (2020), pp. 49-53, 10.18240/ijo.2020.01.07
40 Y. Wang, J. Du, M. Yang, et al.Distinct macular thickness changes after femtosecond laser-assisted cataract surgery of age-related cataract and myopia with cataract Sci Rep, 8 (1) (2018), p. 3279, 10.1038/s41598-018-21698-y
41 K. Yamazaki, J. Yoneyama, T. Hayashi, et al.Efficacy of femtosecond laser-assisted cataract surgery for cataracts due to atopic dermatitis Case Rep Ophthalmol, 12 (1) (2021), pp. 41-47, 10.1159/000510346
42 W. Fan, H. Yan, G. ZhangFemtosecond laser-assisted cataract surgery in Fuchs endothelial corneal dystrophy: long-term outcomes J Cataract Refract Surg, 44 (7) (2018), pp. 864-870, 10.1016/j.jcrs.2018.05.007
43 S.V. Patel, K.H. BaratzComparing outcomes of phacoemulsification with femtosecond laser-assisted cataract surgery in patients with fuchs endothelial dystrophy Am J Ophthalmol, 199 (2019), pp. 258-259, 10.1016/j.ajo.2018.10.028
44 W.W.D. Yong, H.C. Chai, L. Shen, et al.Comparing outcomes of phacoemulsification with femtosecond laser-assisted cataract surgery in patients with fuchs endothelial dystrophy Am J Ophthalmol, 196 (2018), pp. 173-180, 10.1016/j.ajo.2018.08.006
45 S.P. Chee, M.H. Wong, A. JapManagement of severely subluxated cataracts using femtosecond laser-assisted cataract surgery Am J Ophthalmol, 173 (2017), pp. 7-15, 10.1016/j.ajo.2016.09.021
46 A.S. Crema, A. Walsh, I.S. Yamane, et al.Femtosecond laser-assisted cataract surgery in patients with marfan syndrome and subluxated lens J Refract Surg, 31 (5) (2015), pp. 338-341, 10.3928/1081597X-20150424-02
47 P. Orts-Vila, F. Amparo, J.L. Rodriguez-Prats, et al.Alport syndrome and femtosecond laser-assisted cataract surgery J Ophthalmic Vis Res, 15 (2) (2020), pp. 264-269, 10.18502/jovr.v15i2.6748
48 A. Fernandez-Vega Cueto, I. Rodriguez-Una, P.P. Rodriguez-Calvo, et al.Femtosecond laser-assisted cataract surgery in shallow anterior chamber cases Int Ophthalmol, 41 (2) (2021), pp. 707-717, 10.1007/s10792-020-01628-6
49 R. Mencucci, C. De Vitto, M. Cennamo, et al.Femtosecond laser-assisted cataract surgery in eyes with shallow anterior chamber depth: comparison with conventional phacoemulsification J Cataract Refract Surg, 46 (12) (2020), pp. 1604-1610, 10.1097/j.jcrs.0000000000000341
50 IabpCataract https://www.iapb.org/knowledge/what-is-avoidable-blindness/cataract/ (Accessed)
51 Iabp. GAP Implementation Progress – cataract surgery http://atlas.iapb.org/global-action-plan/gap-implementation/gap-implementation-cataract-surgery/ (Accessed)
52 A.C. Day, P.H. Donachie, J.M. Sparrow, et al.The Royal College of Ophthalmologists' National Ophthalmology Database study of cataract surgery: report 1, visual outcomes and complications Eye, 29 (4) (2015), pp. 552-560, 10.1038/eye.2015.3
53 A.R. Hong, A. Sheybani, A.J. HuangIntraoperative management of posterior capsular rupture Curr Opin Ophthalmol, 26 (1) (2015), pp. 16-21, 10.1097/ICU.0000000000000113
54 H. Cao, L. Zhang, L. Li, et al.Risk factors for acute endophthalmitis following cataract surgery: a systematic review and meta-analysis PLoS One, 8 (8) (2013), Article e71731, 10.1371/journal.pone.0071731
55 G. Jakobsson, P. Montan, M. Zetterberg, et al.Capsule complication during cataract surgery: Retinal detachment after cataract surgery with capsule complication: Swedish Capsule Rupture Study Group report 4 J Cataract Refract Surg, 35 (10) (2009), pp. 1699-1705, 10.1016/j.jcrs.2009.05.028
56 K. Yao, Y. Zhu, Z. Zhu, et al.The incidence of postoperative endophthalmitis after cataract surgery in China: a multicenter investigation of 2006-2011 Br J Ophthalmol, 97 (10) (2013), pp. 1312-1317, 10.1136/bjophthalmol-2013-303282
57 Y. Zhu, X. Chen, P. Chen, et al.The occurrence rate of acute-onset postoperative endophthalmitis after cataract surgery in Chinese small- and medium-scale departments of ophthalmology Sci Rep, 7 (2017), p. 40776, 10.1038/srep40776
58 C.J. Chu, R.L. Johnston, C. Buscombe, et al.Risk factors and incidence of macular edema after cataract surgery: a database study of 81984 eyes Ophthalmology, 123 (2) (2016), pp. 316-323, 10.1016/j.ophtha.2015.10.001
59 D.A. Schaumberg, M.R. Dana, W.G. Christen, et al.A systematic overview of the incidence of posterior capsule opacification Ophthalmology, 105 (7) (1998), pp. 1213-1221, 10.1016/S0161-6420(98)97023-3
60 D. Shao, X. Zhu, W. Sun, et al.Effects of femtosecond laser-assisted cataract surgery on dry eye Exp Ther Med, 16 (6) (2018), pp. 5073-5078, 10.3892/etm.2018.6862
61 Y. Yu, H. Hua, M. Wu, et al.Evaluation of dry eye after femtosecond laser-assisted cataract surgery J Cataract Refract Surg, 41 (12) (2015), pp. 2614-2623, 10.1016/j.jcrs.2015.06.036
62 M. Schargus, S. Ivanova, G. Stute, et al.Comparable effects on tear film parameters after femtosecond laser-assisted and conventional cataract surgery Int Ophthalmol, 40 (11) (2020), pp. 3097-3104, 10.1007/s10792-020-01532-z
63 Z. Li, Y. He, S. Keel, et al.Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs Ophthalmology, 125 (8) (2018), pp. 1199-1206, 10.1016/j.ophtha.2018.01.023
64 E. Pead, R. Megaw, J. Cameron, et al.Automated detection of age-related macular degeneration in color fundus photography: a systematic review Surv Ophthalmol, 64 (4) (2019), pp. 498-511, 10.1016/j.survophthal.2019.02.003
65 S.K. Devalla, K.S. Chin, J.M. Mari, et al.A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head Invest Ophthalmol Vis Sci, 59 (1) (2018), pp. 63-74, 10.1167/iovs.17-22617
66 H. Muhammad, T.J. Fuchs, N. De Cuir, et al.Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects J Glaucoma, 26 (12) (2017), pp. 1086-1094, 10.1097/IJG.0000000000000765
67 P.M. Burlina, N. Joshi, M. Pekala, et al.Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks JAMA Ophthalmol, 135 (11) (2017), pp. 1170-1176, 10.1001/jamaophthalmol.2017.3782
68 C.S. Lee, A.J. Tyring, N.P. Deruyter, et al.Deep-learning based, automated segmentation of macular edema in optical coherence tomography Biomed Opt Express, 8 (7) (2017), pp. 3440-3448, 10.1364/BOE.8.003440
69 X. Gao, S. Lin, T.Y. WongAutomatic feature learning to grade nuclear cataracts based on deep learning IEEE Trans Biomed Eng, 62 (11) (2015), pp. 2693-2701, 10.1109/TBME.2015.2444389
70 A. Lee, P. Taylor, J. Kalpathy-Cramer, et al.Machine learning has arrived Ophthalmology, 124 (12) (2017), pp. 1726-1728, 10.1016/j.ophtha.2017.08.046
71 J.H.L. Goh, Z.W. Lim, X. Fang, et al.Artificial intelligence for cataract detection and management Asia Pac J Ophthalmol (Phila)., 9 (2) (2020), pp. 88-95, 10.1097/01.APO.0000656988.16221.04
72 H. Jiang, Y. Yin, C.-R. Wu, et al.Dietary vitamin and carotenoid intake and risk of age-related cataract Am J Clin Nutr, 109 (1) (2019), pp. 43-54, 10.1093/ajcn/nqy270
73 Y. Zhang, W. Jiang, Z. Xie, et al.Vitamin E and risk of age-related cataract: a meta-analysis (2015)
74 M. Eggersdorfer, A. WyssCarotenoids in human nutrition and health Arc. Biochem Biophys., 652 (2018), pp. 18-26, 10.1016/j.abb.2018.06.001
75 M.M. McCusker, K. Durrani, M.J. Payette, et al.An eye on nutrition: the role of vitamins, essential fatty acids, and antioxidants in age-related macular degeneration, dry eye syndrome, and cataract Clin Dermatol, 34 (2) (2016), pp. 276-285, 10.1016/j.clindermatol.2015.11.009
76 F.T. Johra, A.K. Bepari, A.T. Bristy, et al.A Mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease Antioxidants, 9 (11) (2020), 10.3390/antiox9111046
77 L.V. Chasovnikova, V.E. Formazyuk, V.I. Sergienko, et al.The antioxidative properties of carnosine and other drugs Biochem Int, 20 (6) (1990), pp. 1097-1103 https://www.ncbi.nlm.nih.gov/pubmed/2369412
78 Y. Tsuneyoshi, A. Higuchi, K. Negishi, et al.Suppression of presbyopia progression with pirenoxine eye drops: experiments on rats and non-blinded, randomized clinical trial of efficacy Sci Rep, 7 (1) (2017), p. 6819, 10.1038/s41598-017-07208-6
79 C.-C. Hu, J.-H. Liao, K.-Y. Hsu, et al.Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo Mol Vis, 17 (2011), p. 1862
80 L.N. Makley, K.A. McMenimen, B.T. DeVree, et al.Pharmacological chaperone for α-crystallin partially restores transparency in cataract models Science, 350 (6261) (2015), pp. 674-677, 10.1126/science.aac9145
81 L. Zhao, X.J. Chen, J. Zhu, et al.Lanosterol reverses protein aggregation in cataracts Nature, 523 (7562) (2015), pp. 607-611, 10.1038/nature14650
82 R.A. QuinlanDrug discovery. a new dawn for cataracts Science, 350 (6261) (2015), pp. 636-637, 10.1126/science.aad6303
83 Hejtmancik J.F. OphthalmologyCataracts dissolved Nature, 523 (7562) (2015), pp. 540-541, 10.1038/nature14629
84 H. Kang, Z. Yang, R. ZhouLanosterol disrupts aggregation of human γD-crystallin by binding to the hydrophobic dimerization interface J Am Chem Soc, 140 (27) (2018), pp. 8479-8486
85 J. Xu, H. Wang, A. Wang, et al.βB2 W151R mutant is prone to degradation, aggregation and exposes the hydrophobic side chains in the fourth Greek Key motif Biochim Biophys Acta (BBA) - Mol Basis Dis, 1867 (2) (2021), p. 166018, 10.1016/j.bbadis.2020.166018
86 L.-B. Qi, L.-D. Hu, H. Liu, et al.Cataract-causing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain Protein & cell, 7 (7) (2016), pp. 501-515
87 D.M. Daszynski, P. Santhoshkumar, A.S. Phadte, et al.Failure of oxysterols such as lanosterol to restore lens clarity from cataracts Sci Rep, 9 (1) (2019), pp. 1-14
88 A. Upadhyay, A. Amanullah, R. Mishra, et al.Lanosterol suppresses the aggregation and cytotoxicity of misfolded proteins linked with neurodegenerative diseases Mol Neurobiol, 55 (2) (2018), pp. 1169-1182
89 P.M. Shanmugam, A. Barigali, J. Kadaskar, et al.Effect of lanosterol on human cataract nucleus Indian J Ophthalmol, 63 (12) (2015), p. 888
90 L.-D. Hu, J. Wang, X.-J. Chen, et al.Lanosterol modulates proteostasis via dissolving cytosolic sequestosomes/aggresome-like induced structures Biochim Biophys Acta Mol Cell Res, 1867 (2) (2020), p. 118617
91 M. Mori, G. Li, I. Abe, et al.Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat J Clin Invest, 116 (2) (2006), pp. 395-404, 10.1172/JCI20797
92 X.J. Chen, L.D. Hu, K. Yao, et al.Lanosterol and 25-hydroxycholesterol dissociate crystallin aggregates isolated from cataractous human lens via different mechanisms Biochem Biophys Res Commun, 506 (4) (2018), pp. 868-873, 10.1016/j.bbrc.2018.10.175
93 J. Xu, Q. Fu, X. Chen, et al.Advances in pharmacotherapy of cataracts Ann Transl Med, 8 (22) (2020), 10.21037/atm-20-1960 1552-1552
94 X. Yang, X.J. Chen, Z. Yang, et al.Synthesis, evaluation, and structure-activity relationship study of lanosterol derivatives to reverse mutant-crystallin-induced protein aggregation J Med Chem, 61 (19) (2018), pp. 8693-8706, 10.1021/acs.jmedchem.8b00705
95 M. Bohm, K. Petermann, E. Hemkeppler, et al.Defocus curves of 4 presbyopia-correcting IOL designs: diffractive panfocal, diffractive trifocal, segmental refractive, and extended-depth-of-focus J Cataract Refract Surg, 45 (11) (2019), pp. 1625-1636, 10.1016/j.jcrs.2019.07.014
96 V.S.C. Webers, N.J.C. Bauer, I.E.Y. Saelens, et al.Comparison of the intermediate distance of a trifocal IOL with an extended depth-of-focus IOL: results of a prospective randomized trial J Cataract Refract Surg, 46 (2) (2020), pp. 193-203, 10.1097/j.jcrs.0000000000000012
97 M.A. Gil, C. Varon, G. Cardona, et al.Visual acuity and defocus curves with six multifocal intraocular lenses Int Ophthalmol, 40 (2) (2020), pp. 393-401, 10.1007/s10792-019-01196-4
98 G. Monaco, M. Gari, F. Di Censo, et al.Visual performance after bilateral implantation of 2 new presbyopia-correcting intraocular lenses: trifocal versus extended range of vision J Cataract Refract Surg, 43 (6) (2017), pp. 737-747, 10.1016/j.jcrs.2017.03.037
99 R. Ruiz-Mesa, A. Abengozar-Vela, A. Aramburu, et al.Comparison of visual outcomes after bilateral implantation of extended range of vision and trifocal intraocular lenses Eur J Ophthalmol, 27 (4) (2017), pp. 460-465, 10.5301/ejo.5000935
100 B. Cochener, G. Boutillier, M. Lamard, et al.A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses J Refract Surg, 34 (8) (2018), pp. 507-514, 10.3928/1081597X-20180530-02
101 L. Rodov, O. Reitblat, A. Levy, et al.Visual outcomes and patient satisfaction for trifocal, extended depth of focus and monofocal intraocular lenses J Refract Surg, 35 (7) (2019), pp. 434-440, 10.3928/1081597X-20190618-01
102 B. Singh, S. Sharma, S. Dadia, et al.Comparative evaluation of visual outcomes after bilateral implantation of a diffractive trifocal intraocular lens and an extended depth of focus intraocular lens Eye Contact Lens, 46 (5) (2020), pp. 314-318, 10.1097/ICL.0000000000000637
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution